Dawn M Eagle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3125354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clinical Psychology Review, 2006, 26, 379-395.	6.0	689
2	Converging Evidence for a Fronto-Basal-Ganglia Network for Inhibitory Control of Action and Cognition: Figure 1 Journal of Neuroscience, 2007, 27, 11860-11864.	1.7	461
3	The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology, 2008, 199, 439-456.	1.5	425
4	Stop-Signal Reaction-Time Task Performance: Role of Prefrontal Cortex and Subthalamic Nucleus. Cerebral Cortex, 2008, 18, 178-188.	1.6	344
5	Similar Effects of the Selective Noradrenaline Reuptake Inhibitor Atomoxetine on Three Distinct Forms of Impulsivity in the Rat. Neuropsychopharmacology, 2008, 33, 1028-1037.	2.8	318
6	Deficits in Impulse Control Associated with Tonically-elevated Serotonergic Function in Rat Prefrontal Cortex. Neuropsychopharmacology, 2002, 26, 716-728.	2.8	237
7	Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neuroscience and Biobehavioral Reviews, 2010, 34, 50-72.	2.9	222
8	Inhibitory Control in Rats Performing a Stop-Signal Reaction-Time Task: Effects of Lesions of the Medial Striatum and d-Amphetamine Behavioral Neuroscience, 2003, 117, 1302-1317.	0.6	215
9	Dissociable Effects of Lesions to Orbitofrontal Cortex Subregions on Impulsive Choice in the Rat. Journal of Neuroscience, 2011, 31, 6398-6404.	1.7	187
10	Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: Specific deficits in â€~waiting' versus â€~stopping'. Behavioural Brain Research, 2009, 196, 310-316.	1.2	171
11	Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology, 2009, 205, 273-283.	1.5	170
12	Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharmacology, 2007, 192, 193-206.	1.5	167
13	Prefrontal and Monoaminergic Contributions to Stop-Signal Task Performance in Rats. Journal of Neuroscience, 2011, 31, 9254-9263.	1.7	149
14	Contrasting Roles for Dopamine D1 and D2 Receptor Subtypes in the Dorsomedial Striatum but Not the Nucleus Accumbens Core during Behavioral Inhibition in the Stop-Signal Task in Rats. Journal of Neuroscience, 2011, 31, 7349-7356.	1.7	129
15	Serotonin Depletion Impairs Waiting but not Stop-Signal Reaction Time in Rats: Implications for Theories of the Role of 5-HT in Behavioral Inhibition. Neuropsychopharmacology, 2009, 34, 1311-1321.	2.8	124
16	Lesions of the medial prefrontal cortex or nucleus accumbens core do not impair inhibitory control in rats performing a stop-signal reaction time task. Behavioural Brain Research, 2003, 146, 131-144.	1.2	107
17	Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. European Journal of Neuroscience, 2001, 13, 1609-1616.	1.2	106
18	Effects of regional striatal lesions on motor, motivational, and executive aspects of progressive-ratio performance in rats Behavioral Neuroscience, 1999, 113, 718-731.	0.6	74

DAWN M EAGLE

#	Article	IF	CITATIONS
19	Animal models of obsessive-compulsive spectrum disorders. CNS Spectrums, 2014, 19, 28-49.	0.7	57
20	The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: A novel possible model of OCD. Behavioural Brain Research, 2014, 264, 207-229.	1.2	52
21	Embryonic Donor Age and Dissection Influences Striatal Graft Development and Functional Integration in a Rodent Model of Huntington's Disease. Experimental Neurology, 2000, 163, 85-97.	2.0	42
22	Free operant observing in humans: a translational approach to compulsive certainty seeking. Quarterly Journal of Experimental Psychology, 2018, 71, 2052-2069.	0.6	11
23	Role of the medial prefrontal cortex and nucleus accumbens in an operant model of checking behaviour and uncertainty. Brain and Neuroscience Advances, 2017, 1, 239821281773340.	1.8	8
24	Checking responses of goal- and sign-trackers are differentially affected by threat in a rodent analog of obsessive–compulsive disorder. Learning and Memory, 2020, 27, 190-200.	0.5	5
25	B.10 - THE OBSERVING RESPONSE TEST FOR RATS AS A PUTATIVE MODEL OF CHECKING SYMPTOMS OF OBSESSIVE-COMPULSIVE DISORDER. Behavioural Pharmacology, 2013, 24, e29.	0.8	0
26	Operant Analysis of Striatal Dysfunction. , 2000, , 249-273.		0