Michael G Heinz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3125263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Speech Categorization Reveals the Role of Early-Stage Temporal-Coherence Processing in Auditory Scene Analysis. Journal of Neuroscience, 2022, 42, 240-254.	3.6	9
2	Distorted Tonotopy Severely Degrades Neural Representations of Connected Speech in Noise following Acoustic Trauma. Journal of Neuroscience, 2022, 42, 1477-1490.	3.6	11
3	Noninvasive Measures of Distorted Tonotopic Speech Coding Following Noise-Induced Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 51-66.	1.8	8
4	Spectrally specific temporal analyses of spike-train responses to complex sounds: A unifying framework. PLoS Computational Biology, 2021, 17, e1008155.	3.2	9
5	Modulation masking and fine structure shape neural envelope coding to predict speech intelligibility across diverse listening conditions. Journal of the Acoustical Society of America, 2021, 150, 2230-2244.	1.1	14
6	Temporal fine structure influences voicing confusions for consonant identification in multi-talker babble. Journal of the Acoustical Society of America, 2021, 150, 2664-2676.	1.1	7
7	Modeling the effects of age and hearing loss on concurrent vowel scores. Journal of the Acoustical Society of America, 2021, 150, 3581-3592.	1.1	2
8	Divergent Auditory Nerve Encoding Deficits Between Two Common Etiologies of Sensorineural Hearing Loss. Journal of Neuroscience, 2019, 39, 6879-6887.	3.6	23
9	The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints. Hearing Research, 2019, 377, 109-121.	2.0	76
10	Non-Invasive Assays of Cochlear Synaptopathy – Candidates and Considerations. Neuroscience, 2019, 407, 53-66.	2.3	81
11	The chinchilla animal model for hearing science and noise-induced hearing loss. Journal of the Acoustical Society of America, 2019, 146, 3710-3732.	1.1	36
12	Effects of age on sensitivity to interaural time differences in envelope and fine structure, individually and in combination. Journal of the Acoustical Society of America, 2018, 143, 1287-1296.	1.1	12
13	Translational issues in cochlear synaptopathy. Hearing Research, 2017, 349, 164-171.	2.0	118
14	Afferent Coding and Efferent Control in the Normal and Impaired Cochlea. Springer Handbook of Auditory Research, 2017, , 215-252.	0.7	6
15	Effects of noise exposure on young adults with normal audiograms II: Behavioral measures. Hearing Research, 2017, 356, 74-86.	2.0	93
16	Effects of noise exposure on young adults with normal audiograms I: Electrophysiology. Hearing Research, 2017, 344, 68-81.	2.0	176
17	Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model. Trends in Hearing, 2016, 20, 233121651666731.	1.3	6
18	Suppression Measured from Chinchilla Auditory-Nerve-Fiber Responses Following Noise-Induced Hearing Loss: Adaptive-Tracking and Systems-Identification Approaches. Advances in Experimental Medicine and Biology, 2016, 894, 285-295.	1.6	2

MICHAEL G HEINZ

#	Article	lF	CITATIONS
19	Distorted Tonotopic Coding of Temporal Envelope and Fine Structure with Noise-Induced Hearing Loss. Journal of Neuroscience, 2016, 36, 2227-2237.	3.6	43
20	A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation. Human Molecular Genetics, 2015, 24, 1-8.	2.9	76
21	Noise-induced hearing loss increases the temporal precision of complex envelope coding by auditory-nerve fibers. Frontiers in Systems Neuroscience, 2014, 8, 20.	2.5	40
22	Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas. Hearing Research, 2014, 309, 55-62.	2.0	67
23	Modeling the Time-Varying and Level-Dependent Effects of the Medial Olivocochlear Reflex in Auditory Nerve Responses. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 159-173.	1.8	21
24	Optimal Combination of Neural Temporal Envelope and Fine Structure Cues to Explain Speech Identification in Background Noise. Journal of Neuroscience, 2014, 34, 12145-12154.	3.6	25
25	Implications of Within-Fiber Temporal Coding for Perceptual Studies of F0 Discrimination and Discrimination of Harmonic and Inharmonic Tone Complexes. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 465-482.	1.8	11
26	Effects of sensorineural hearing loss on temporal coding of narrowband andÂbroadband signals in the auditory periphery. Hearing Research, 2013, 303, 39-47.	2.0	41
27	Effects of Sensorineural Hearing Loss on Temporal Coding of Harmonic and Inharmonic Tone Complexes in the Auditory Nerve. Advances in Experimental Medicine and Biology, 2013, 787, 109-118.	1.6	2
28	The use of confusion patterns to evaluate the neural basis for concurrent vowel identification. Journal of the Acoustical Society of America, 2013, 134, 2988-3000.	1.1	19
29	Correlations between noninvasive and direct physiological metrics of auditory function in chinchillas with noise-induced hearing loss. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
30	Psychophysiological Analyses Demonstrate the Importance of Neural Envelope Coding for Speech Perception in Noise. Journal of Neuroscience, 2012, 32, 1747-1756.	3.6	80
31	Diminished temporal coding with sensorineural hearing loss emerges in background noise. Nature Neuroscience, 2012, 15, 1362-1364.	14.8	90
32	Temporal modulation transfer functions measured from auditory-nerve responses following sensorineural hearing loss. Hearing Research, 2012, 286, 64-75.	2.0	25
33	Modeling the Anti-masking Effects of the Olivocochlear Reflex in Auditory Nerve Responses to Tones in Sustained Noise. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 219-235.	1.8	30
34	Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas. Hearing Research, 2011, 280, 236-244.	2.0	34
35	Evaluating Adaptation and Olivocochlear Efferent Feedback as Potential Explanations of Psychophysical Overshoot. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 345-360.	1.8	46
36	Predicted effects of sensorineural hearing loss on across-fiber envelope coding in the auditory nerve. Journal of the Acoustical Society of America, 2011, 129, 4001-4013.	1.1	20

MICHAEL G HEINZ

#	Article	IF	CITATIONS
37	Envelope Coding in Auditory Nerve Fibers Following Noise-Induced Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 657-673.	1.8	115
38	Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses. Hearing Research, 2010, 269, 23-33.	2.0	41
39	Across-Fiber Coding of Temporal Fine-Structure: Effects of Noise-Induced Hearing Loss on Auditory-Nerve Responses. , 2010, , 621-630.		16
40	Computational Modeling of Sensorineural Hearing Loss. Springer Handbook of Auditory Research, 2010, , 177-202.	0.7	14
41	Quantifying Envelope and Fine-Structure Coding in Auditory Nerve Responses to Chimaeric Speech. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 407-423.	1.8	76
42	Effect of auditory-nerve response variability on estimates of tuning curves. Journal of the Acoustical Society of America, 2007, 122, EL203-EL209.	1.1	18
43	Spatiotemporal Encoding of Vowels in Noise Studied with the Responses of Individual Auditory-Nerve Fibers. , 2007, , 107-115.		7
44	Auditory-Nerve Rate Responses are Inconsistent with Common Hypotheses for the Neural Correlates of Loudness Recruitment. JARO - Journal of the Association for Research in Otolaryngology, 2005, 6, 91-105.	1.8	74
45	Response Growth With Sound Level in Auditory-Nerve Fibers After Noise-Induced Hearing Loss. Journal of Neurophysiology, 2004, 91, 784-795.	1.8	114
46	Quantifying the Information in Auditory-Nerve Responses for Level Discrimination. JARO - Journal of the Association for Research in Otolaryngology, 2003, 4, 294-311.	1.8	56
47	Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates. Journal of the Acoustical Society of America, 2002, 111, 996-1011.	1.1	38
48	Auditory nerve model for predicting performance limits of normal and impaired listeners. Acoustics Research Letters Online: ARLO, 2001, 2, 91-96.	0.7	126
49	A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. Journal of the Acoustical Society of America, 2001, 109, 648-670.	1.1	303
50	Evaluating Auditory Performance Limits: I. One-Parameter Discrimination Using a Computational Model for the Auditory Nerve. Neural Computation, 2001, 13, 2273-2316.	2.2	169
51	Rate and timing cues associated with the cochlear amplifier: Level discrimination based on monaural cross-frequency coincidence detection. Journal of the Acoustical Society of America, 2001, 110, 2065-2084	1.1	65