
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3125026/publications.pdf Version: 2024-02-01

Διλικ Κομι

#	Article	IF	CITATIONS
1	Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infectious Diseases, The, 2017, 17, e107-e117.	4.6	302
2	NSs Protein of Rift Valley Fever Virus Blocks Interferon Production by Inhibiting Host Gene Transcription. Journal of Virology, 2004, 78, 9798-9806.	1.5	300
3	Noncoding Flavivirus RNA Displays RNA Interference Suppressor Activity in Insect and Mammalian Cells. Journal of Virology, 2012, 86, 13486-13500.	1.5	248
4	Zika virus: a previously slow pandemic spreads rapidly through the Americas. Journal of General Virology, 2016, 97, 269-273.	1.3	246
5	Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil. PLoS Neglected Tropical Diseases, 2016, 10, e0005048.	1.3	193
6	Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. Journal of General Virology, 2013, 94, 1680-1689.	1.3	184
7	Antiviral immunity of <i>Anopheles gambiae</i> is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E176-85.	3.3	163
8	La Crosse Bunyavirus Nonstructural Protein NSs Serves To Suppress the Type I Interferon System of Mammalian Hosts. Journal of Virology, 2007, 81, 4991-4999.	1.5	150
9	Phenoloxidase Activity Acts as a Mosquito Innate Immune Response against Infection with Semliki Forest Virus. PLoS Pathogens, 2012, 8, e1002977.	2.1	119
10	Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Research, 2014, 42, 9436-9446.	6.5	118
11	Characterization of Aedes aegypti Innate-Immune Pathways that Limit Chikungunya Virus Replication. PLoS Neglected Tropical Diseases, 2014, 8, e2994.	1.3	110
12	Advances in dissecting mosquito innate immune responses to arbovirus infection. Journal of General Virology, 2009, 90, 2061-2072.	1.3	100
13	Antiviral RNA Interference Responses Induced by Semliki Forest Virus Infection of Mosquito Cells: Characterization, Origin, and Frequency-Dependent Functions of Virus-Derived Small Interfering RNAs. Journal of Virology, 2011, 85, 2907-2917.	1.5	99
14	Schmallenberg Virus Pathogenesis, Tropism and Interaction with the Innate Immune System of the Host. PLoS Pathogens, 2013, 9, e1003133.	2.1	94
15	Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. MSphere, 2017, 2, .	1.3	92
16	Bunyamwera Virus Nonstructural Protein NSs Counteracts Interferon Regulatory Factor 3-Mediated Induction of Early Cell Death. Journal of Virology, 2003, 77, 7999-8008.	1.5	84
17	Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways. PLoS Pathogens, 2016, 12, e1005536.	2.1	79
18	Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Neglected Tropical Diseases, 2017, 11, e0006010.	1.3	76

#	Article	IF	CITATIONS
19	RNA Interference Targets Arbovirus Replication in Culicoides Cells. Journal of Virology, 2013, 87, 2441-2454.	1.5	75
20	Interaction of Bunyamwera Orthobunyavirus NSs Protein with Mediator Protein MED8: a Mechanism for Inhibiting the Interferon Response. Journal of Virology, 2006, 80, 9667-9675.	1.5	71
21	Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. Journal of General Virology, 2014, 95, 517-530.	1.3	71
22	Complementarity, sequence and structural elements within the 3′ and 5′ non-coding regions of the Bunyamwera orthobunyavirus S segment determine promoter strength. Journal of General Virology, 2004, 85, 3269-3278.	1.3	65
23	Fighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes. Insects, 2015, 6, 236-278.	1.0	65
24	New Insights into Control of Arbovirus Replication and Spread by Insect RNA Interference Pathways. Insects, 2012, 3, 511-531.	1.0	58
25	Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected. Acta Neuropathologica Communications, 2017, 5, 50.	2.4	56
26	Non-Structural Proteins of Arthropod-Borne Bunyaviruses: Roles and Functions. Viruses, 2013, 5, 2447-2468.	1.5	54
27	RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems. MSphere, 2017, 2, .	1.3	52
28	Genetic elements regulating packaging of the Bunyamwera orthobunyavirus genome. Journal of General Virology, 2006, 87, 177-187.	1.3	51
29	The Importance of Socio-Economic Versus Environmental Risk Factors for Reported Dengue Cases in Java, Indonesia. PLoS Neglected Tropical Diseases, 2016, 10, e0004964.	1.3	50
30	Tick Cell Lines for Study of Crimean-Congo Hemorrhagic Fever Virus and Other Arboviruses. Vector-Borne and Zoonotic Diseases, 2012, 12, 769-781.	0.6	48
31	A Bunyamwera Virus Minireplicon System in Mosquito Cells. Journal of Virology, 2004, 78, 5679-5685.	1.5	43
32	The Antiviral RNAi Response in Vector and Non-vector Cells against Orthobunyaviruses. PLoS Neglected Tropical Diseases, 2017, 11, e0005272.	1.3	43
33	Cell-to-Cell Spread of the RNA Interference Response Suppresses Semliki Forest Virus (SFV) Infection of Mosquito Cell Cultures and Cannot Be Antagonized by SFV. Journal of Virology, 2009, 83, 5735-5748.	1.5	42
34	viRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics, 2013, 29, 1902-1903.	1.8	41
35	Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus. Parasites and Vectors, 2016, 9, 94.	1.0	41
36	Dengue in Java, Indonesia: Relevance of Mosquito Indices as Risk Predictors. PLoS Neglected Tropical Diseases, 2016, 10, e0004500.	1.3	36

#	Article	IF	CITATIONS
37	Culex quinquefasciatus mosquitoes do not support replication of Zika virus. Journal of General Virology, 2018, 99, 258-264.	1.3	36
38	Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines. Ticks and Tick-borne Diseases, 2012, 3, 137-146.	1.1	34
39	Gene silencing in tick cell lines using small interfering or long double-stranded RNA. Experimental and Applied Acarology, 2013, 59, 319-338.	0.7	32
40	Spindle-E Acts Antivirally Against Alphaviruses in Mosquito Cells. Viruses, 2018, 10, 88.	1.5	29
41	Recent insights into SARSâ \in CoVâ \in 2 omicron variant. Reviews in Medical Virology, 2023, 33, .	3.9	29
42	Inhibition of type I interferon induction and signalling by mosquito-borne flaviviruses. Cellular Microbiology, 2017, 19, e12737.	1.1	27
43	NSs protein of Schmallenberg virus counteracts the antiviral response of the cell by inhibiting its transcriptional machinery. Journal of General Virology, 2014, 95, 1640-1646.	1.3	27
44	Homotypic Interaction of Bunyamwera Virus Nucleocapsid Protein. Journal of Virology, 2005, 79, 13166-13172.	1.5	26
45	Sugar feeding protects against arboviral infection by enhancing gut immunity in the mosquito vector Aedes aegypti. PLoS Pathogens, 2021, 17, e1009870.	2.1	23
46	Toxorhynchites Species: A Review of Current Knowledge. Insects, 2020, 11, 747.	1.0	21
47	Assessing the Potential Interactions between Cellular miRNA and Arboviral Genomic RNA in the Yellow Fever Mosquito, Aedes aegypti. Viruses, 2019, 11, 540.	1.5	19
48	Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nature Communications, 2021, 12, 2766.	5.8	19
49	Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: Implications for CNS complications. Glia, 2021, 69, 2023-2036.	2.5	17
50	Zika Virus Infection Leads to Demyelination and Axonal Injury in Mature CNS Cultures. Viruses, 2021, 13, 91.	1.5	17
51	Identification and RNAi Profile of a Novel Iflavirus Infecting Senegalese Aedes vexans arabiensis Mosquitoes. Viruses, 2020, 12, 440.	1.5	16
52	Transcriptome analysis reveals the host response to Schmallenberg virus in bovine cells and antagonistic effects of the NSs protein. BMC Genomics, 2015, 16, 324.	1.2	15
53	Effects of a point mutation in the $3\hat{e}^2$ end of the S genome segment of naturally occurring and engineered Bunyamwera viruses. Journal of General Virology, 2003, 84, 789-793.	1.3	14
54	Glucose-Regulated Protein 78 Interacts with Zika Virus Envelope Protein and Contributes to a Productive Infection. Viruses, 2020, 12, 524.	1.5	14

#	Article	IF	CITATIONS
55	Development of reverse genetics systems and investigation of host response antagonism and reassortment potential for Cache Valley and Kairi viruses, two emerging orthobunyaviruses of the Americas. PLoS Neglected Tropical Diseases, 2018, 12, e0006884.	1.3	12
56	The Aedes aegypti Domino Ortholog p400 Regulates Antiviral Exogenous Small Interfering RNA Pathway Activity and <i>ago-2</i> Expression. MSphere, 2020, 5, .	1.3	12
57	An Aedes aegypti-Derived Ago2 Knockout Cell Line to Investigate Arbovirus Infections. Viruses, 2021, 13, 1066.	1.5	10
58	Mutational analysis of Rift Valley fever phlebovirus nucleocapsid protein indicates novel conserved, functional amino acids. PLoS Neglected Tropical Diseases, 2017, 11, e0006155.	1.3	10
59	Interactions of Viral Proteins from Pathogenic and Low or Non-Pathogenic Orthohantaviruses with Human Type I Interferon Signaling. Viruses, 2021, 13, 140.	1.5	8
60	SARM1 Depletion Slows Axon Degeneration in a CNS Model of Neurotropic Viral Infection. Frontiers in Molecular Neuroscience, 2022, 15, 860410.	1.4	8
61	Antiviral RNA Interference Activity in Cells of the Predatory Mosquito, Toxorhynchites amboinensis. Viruses, 2018, 10, 694.	1.5	7
62	Mutational analysis of Aedes aegypti Dicer 2 provides insights into the biogenesis of antiviral exogenous small interfering RNAs. PLoS Pathogens, 2022, 18, e1010202.	2.1	6
63	aBravo Is a Novel Aedes aegypti Antiviral Protein That Interacts with, but Acts Independently of, the Exogenous siRNA Pathway Effector Dicer 2. Viruses, 2020, 12, 748.	1.5	5
64	Development of a Reverse Genetics System for Toscana Virus (Lineage A). Viruses, 2020, 12, 411.	1.5	5
65	Exploration of immunological responses underpinning severe fever with thrombocytopenia syndrome virus infection reveals IL-6 as a therapeutic target in an immunocompromised mouse model. , 2022, 1, pgac024.		5
66	In memoriam – Richard M. Elliott (1954–2015). Journal of General Virology, 2015, 96, 1975-1978.	1.3	4
67	Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements. Pathogens and Global Health, 2016, 110, 164-172.	1.0	3
68	Modified recombinant human IgC1â€Fc is superior to natural intravenous immunoglobulin at inhibiting immuneâ€mediated demyelination. Immunology, 2021, 164, 90-105.	2.0	2
69	Mosquito-borne arboviruses in Uganda: history, transmission and burden. Journal of General Virology, 2021, 102, .	1.3	2
70	Bunyavirus/mosquito interactions. , 2001, , 91-102.		0
71	Limited replication of human cytomegalovirus in a trophoblast cell line. Journal of General Virology, 2021, 102, .	1.3	0