Jiannan Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3124973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper-Catalyzed C–H Oxidative Radical Functionalization and Annulation of Aniline-Linked 1,7-Enynes: Evidence for a 1,5-Hydride Shift Mechanism. Organic Letters, 2016, 18, 6460-6463.	4.6	72
2	Spiro-Functionalized Diphenylethenes: Suppression of a Reversible Photocyclization Contributes to the Aggregation-Induced Emission Effect. Journal of the American Chemical Society, 2019, 141, 9803-9807.	13.7	65
3	Recent advances in radical-mediated [2+2+m] annulation of 1,n-enynes. Science China Chemistry, 2019, 62, 1463-1475.	8.2	52
4	Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH ₂ CF ₃ or ICH ₂ CHF ₂ Leading to β-CF ₃ /CHF ₂ -Substituted Ketones. Organic Letters, 2016, 18, 1780-1783.	4.6	45
5	A rhodamine–quinoline type molecular switch as a highly selective sequential sensor for Al ³⁺ and F ^{â^'} in aqueous solution. RSC Advances, 2014, 4, 42337-42345.	3.6	38
6	Copperâ€Catalyzed Amidation of Acids Using Formamides as the Amine Source. European Journal of Organic Chemistry, 2013, 2013, 5737-5742.	2.4	37
7	Method for Transforming Alkynes into (<i>E</i>)-Dibromoalkenes. Journal of Organic Chemistry, 2014, 79, 11378-11382.	3.2	36
8	A new biodegradable polymer: PEGylated chitosan-g-PEI possessing a hydroxyl group at the PEG end. Journal of Polymer Research, 2008, 15, 181-185.	2.4	35
9	Cu(OAc)2-Catalyzed Thiolation of Acyl C-H Bonds with Thiols Using TBHP as an Oxidant. Synlett, 2013, 24, 443-448.	1.8	35
10	Gold(I)â€Catalyzed Hydration of Alkynylphosphonates: Efficient Access to βâ€Ketophosphonates. European Journal of Organic Chemistry, 2014, 2014, 2668-2671.	2.4	34
11	Copper-Catalyzed Oxidative ipso-Cyclization of N-(p-Methoxyaryl)propiolamides with Disulfides and Water Leading to 3-(Arylthio)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-diones. Synlett, 2015, 26, 1213-1216.	1.8	30
12	Transition Metal-Catalyzed C—H Oxidation Reactions. Chinese Journal of Organic Chemistry, 2012, 32, 1555.	1.3	29
13	Gold-Catalyzed Intermolecular Oxidation of Terminal Alkynes: Simple and Efficient Synthesis of α-Mesyloxy Ketones. Synlett, 2013, 24, 1809-1812.	1.8	27
14	Copper-catalyzed oxidative alkenylation of C(sp ³)–H bonds via benzyl or alkyl radical addition to β-nitrostyrenes. New Journal of Chemistry, 2015, 39, 3093-3097.	2.8	27
15	Throughâ€Space CBr···π Halogen Interaction: Efficient Modulation of Reactionâ€Based Photochromism and Photoluminescence at Crystalline States for Irradiation Timeâ€Dependent Anti ounterfeiting. Advanced Functional Materials, 2021, 31, 2009024.	14.9	27
16	A High Yield and Pilot-Scale Process for the Preparation of Adapalene. Organic Process Research and Development, 2006, 10, 285-288.	2.7	25
17	Copperâ€Catalyzed αâ€Aminoxylation of Ketones with 2,2,6,6â€Tetramethylpiperidineâ€1â€oxyl (TEMPO). Adva Synthesis and Catalysis, 2013, 355, 3387-3390.	nçed 4.3	24
18	Silverâ€Catalyzed Decarboxylative Couplings of Acids and Anhydrides: An Entry to 1,2â€Diketones and Arylâ€Substituted Ethanes. Advanced Synthesis and Catalysis, 2018, 360, 1439-1443.	4.3	23

JIANNAN XIANG

#	Article	IF	CITATIONS
19	Synthesis of <i>N</i> -arylsulfonamides <i>via</i> Fe-promoted reaction of sulfonyl halides with nitroarenes in an aqueous medium. Organic and Biomolecular Chemistry, 2018, 16, 5016-5020.	2.8	23
20	Metal-free oxidative [2+2+1] heteroannulation of 1,7-enynes with thiocyanates toward thieno[3,4- <i>c</i>]quinolin-4(5 <i>H</i>)-ones. Chemical Communications, 2019, 55, 6727-6730.	4.1	23
21	One-Pot Three-Component Synthesis of Novel Diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(arylamino)methyl)phosphonate as Potential Anticancer Agents. International Journal of Molecular Sciences, 2016, 17, 653.	4.1	21
22	Copper-catalyzed oxidative cross-coupling of α-aminocarbonyl compounds with primary amines toward 2-oxo-acetamidines. Organic and Biomolecular Chemistry, 2017, 15, 8134-8139.	2.8	19
23	Gold-catalyzed Synthesis of 4-(2-Oxoalkoxy)butyl Methanesulfonates via Ring-opening of Tetrahydrofuran. Chemistry Letters, 2014, 43, 893-894.	1.3	14
24	Efficient Synthesis of Vinyl Sulfones by Manganese-Catalyzed Decarboxylative Coupling of Cinnamic Acids with Aromatic Sulfinic Acid Sodium Salts. Synlett, 2016, 27, 2695-2698.	1.8	14
25	Synthesis and characterization of biodegradable amphiphilic triblock copolymers methoxy-poly(ethylene glycol)-b-poly(L-lysine)-b-poly(L-lactic acid). Journal of Polymer Research, 2012, 19, 1.	2.4	12
26	Straightforward and Highly Efficient Synthesis of α-Acetoxy Ketones through Gold-Catalyzed Intermolecular Oxidation of Terminal Alkynes. Synthesis, 2013, 45, 2605-2611.	2.3	12
27	Highly Efficient Synthesis of <i>α</i> â€Halomethylketones via Ce(SO ₄) ₂ /Acid Coâ€Catalyzed Hydration of Alkynes. Chinese Journal of Chemistry, 2016, 34, 1251-1254.	4.9	12
28	One-pot Preparation of Homopropargylic <i>N</i> -Sulfonylamines Catalyzed by Zinc Powder. Chemistry Letters, 2013, 42, 1233-1234.	1.3	10
29	PhI(OAc) ₂ -mediated 1,2-aminohalogenation of alkynes: a general access to (E)-4-(halomethylene)oxazolidin-2-ones. Organic and Biomolecular Chemistry, 2017, 15, 3964-3967.	2.8	10
30	Fe-mediated synthesis of <i>N</i> -aryl amides from nitroarenes and acyl chlorides. RSC Advances, 2021, 11, 15290-15295.	3.6	10
31	A Convenient Method for the Synthesis of the Amphiphilic Triblock Copolymer Poly(<scp>L</scp> ″actic acid) <i>â€blockâ€</i> Poly(<scp>L</scp> ″ysine) <i>â€blockâ€</i> Poly(ethylene glyc Monomethyl Ether. Macromolecular Chemistry and Physics, 2011, 212, 563-573.	o\$.2	8
32	Synthesis of 2â€Aminoâ€1,3,4â€oxadiazoles through Elemental Sulfur Promoted Cyclization of Hydrazides with Isocyanides. Chinese Journal of Chemistry, 2017, 35, 1611-1618.	4.9	8
33	Convenient and Efficient Palladium-Catalyzed Coupling Reaction Between Ferroceneboronic Acid and Organic Triflates. Synthetic Communications, 2010, 40, 1202-1208.	2.1	7
34	Cleaved DNAzyme substrate induced enzymatic cascade for the exponential amplified analysis of l-histidine. Talanta, 2015, 132, 809-813.	5.5	7
35	Hypervalent iodine-triggered transformation of homopropargyl sulfonamides into dihalo-2,3-dihydropyrroles. Organic and Biomolecular Chemistry, 2017, 15, 796-800.	2.8	7
36	Design, synthesis, and evaluation of new 2-oxoquinoline arylaminothiazole derivatives as potential anticancer agents. Bioorganic Chemistry, 2021, 106, 104469.	4.1	7

JIANNAN XIANG

#	Article	IF	CITATIONS
37	New, Simple, and Effective Thiosemicarbazide Ligand for Copper(II)-Catalyzed <i>N</i> -Arylation of Imidazoles. Synthetic Communications, 2012, 42, 1192-1199.	2.1	6
38	A new fluoropyrido[3,4-b]pyrazine based polymer for efficient photovoltaics. Polymer Chemistry, 2017, 8, 2227-2234.	3.9	4
39	Cu(OAc)2 and acids promoted the oxidative cleavage of α-aminocarbonyl compounds with amines: efficient and selective synthesis of 2-t-amino-2-imino-carbonyl and 2-amino-2-oxocarbonyl. Tetrahedron Letters, 2020, 61, 151913.	1.4	4
40	Oxidative alkylation/alkynylation of terminal alkenes <i>via</i> alkylaldehyde decarbonylation and 1,2-alkynyl migration. Organic and Biomolecular Chemistry, 2021, 19, 3154-3158.	2.8	4
41	UV-Light-Induced Dehydrogenative N-Acylation of Amines with 2-Nitrobenzaldehydes To Give 2-Aminobenzamides. Synthesis, 2022, 54, 2361-2372.	2.3	4
42	Nickel-Catalyzed Oxidative Cyclotrimerization of α-Amino Ketones: Selective Synthesis of Pyrazoles. Synlett, 2013, 25, 64-68.	1.8	3
43	Synthesis of 3-acylated indoles through iron-catalyzed oxidative coupling of indoles with α -amino carbonyl compounds. Synthetic Communications, 2017, 47, 2062-2069.	2.1	3
44	Synthesis of $\hat{1}^2$ -CF3 Ketones through Copper/Silver Cocatalyzed Oxidative Coupling of Enol Acetates with ICH2CF3. Synlett, 2018, 29, 2279-2282.	1.8	3
45	Novel Stereoselective Synthesis of 4-Acetoxyazetidinone from Methyl 6,6-Dibromopenicillanate: Key Intermediate for the Preparation of Carbapenem Antibiotics. Synthetic Communications, 2009, 39, 4019-4029.	2.1	2
46	Base-Mediated Synthesis of 1-Aryl-4-(phenylsulfonyl)butan-1-ones from 1,2-Bis(phenylsulfonyl)ethane and Ketones. Synthesis, 2014, 46, 203-211.	2.3	2
47	Synthesis of Malonates from 3-Halopropynoates, Alcohols, and Water Using DABCO. Synthesis, 2015, 47, 3309-3314.	2.3	2
48	CF ₃ SO ₂ Na-Mediated Five-Component Carbonylation of Triarylboroxines with TMSCF ₃ and THF/LiOH/NaI to Give Aroyloxyalkyl Iodides. Journal of Organic Chemistry, 2022, 87, 9635-9644.	3.2	2
49	Gold-Catalyzed Skeletal Rearrangement of 1-[2-(1H-Isochromen-3-yl)aryl]ethanones with Alcohols. Synthesis, 2012, 44, 2049-2057.	2.3	1
50	A Mild and Rapid Synthesis of (<i>Z</i>)â€ <i>β</i> ‣ulfonyl Enoates from Sodium Sulfinates and Propargyl Esters. Chinese Journal of Chemistry, 2016, 34, 1245-1250.	4.9	1
51	Copper-Catalyzed Oxidative Self-Coupling of α-Amino Carbonyl Compounds for the Synthesis of Tetrasubstituted 1,4-Enediones. Synlett, 2018, 29, 2422-2426.	1.8	1
52	Methylation Alkynylation of Terminal Alkenes via 1,2-Alkynyl Migration Using Dicumyl Peroxide as the Methyl Source. Synthesis, 2021, 53, 4700-4708.	2.3	1
53	Copper/Iodine atalyzed Hydroxyamination of Alkenyl Keto Oximes Using DMSO as the Oxygen Atom Source and Medium. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
54	Synthesis of 2-oxo-acetamidines via copper-catalyzed oxidative cross-coupling of α-amino ketone compounds with amines. Catalysis Communications, 2019, 131, 105766.	3.3	0

#	Article	IF	CITATIONS
55	One-Pot Three-Component Coupling Reaction of α-Amino Aryl Ketones, Indoles, and Perbromomethane Under Mild Conditions. Frontiers in Chemistry, 2022, 10, 825772.	3.6	0