
## Thomas J Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/312494/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013.<br>Environmental Science and Pollution Research, 2017, 24, 17285-17325.                                            | 5.3  | 405       |
| 2  | Global warming and plant–pollinator mismatches. Emerging Topics in Life Sciences, 2020, 4, 77-86.                                                                                                           | 2.6  | 128       |
| 3  | Pollinator-friendly management does not increase the diversity of farmland bees and wasps.<br>Biological Conservation, 2015, 187, 120-126.                                                                  | 4.1  | 109       |
| 4  | Targeted agriâ€environment schemes significantly improve the population size of common farmland<br>bumblebee species. Molecular Ecology, 2015, 24, 1668-1680.                                               | 3.9  | 105       |
| 5  | Providing foraging resources for solitary bees on farmland: current schemes for pollinators benefit<br>a limited suite of species. Journal of Applied Ecology, 2017, 54, 323-333.                           | 4.0  | 90        |
| 6  | Narrow pollen diets are associated with declining Midwestern bumble bee species. Ecology, 2019, 100, e02697.                                                                                                | 3.2  | 78        |
| 7  | Managed honey bees as a radar for wild bee decline?. Apidologie, 2020, 51, 1100-1116.                                                                                                                       | 2.0  | 58        |
| 8  | Wild Bee Pollen Diets Reveal Patterns of Seasonal Foraging Resources for Honey Bees. Frontiers in<br>Ecology and Evolution, 2018, 6, .                                                                      | 2.2  | 49        |
| 9  | Mismatched outcomes for biodiversity and ecosystem services: testing the responses of crop pollinators and wild bee biodiversity to habitat enhancement. Ecology Letters, 2020, 23, 326-335.                | 6.4  | 41        |
| 10 | An assessment of historical and contemporary diet breadth in polylectic Andrena bee species.<br>Biological Conservation, 2017, 215, 72-80.                                                                  | 4.1  | 40        |
| 11 | Diet characterisation of solitary bees on farmland: dietary specialisation predicts rarity. Biodiversity and Conservation, 2016, 25, 2655-2671.                                                             | 2.6  | 39        |
| 12 | Expanding insect pollinators in the <scp>A</scp> nthropocene. Biological Reviews, 2021, 96, 2755-2770.                                                                                                      | 10.4 | 35        |
| 13 | The wild bees (Hymenoptera: Apoidea) of Morocco. Zootaxa, 2020, 4892, zootaxa.4892.1.1.                                                                                                                     | 0.5  | 33        |
| 14 | Phylogeny, biogeography and diversification of the mining bee family Andrenidae. Systematic Entomology, 2022, 47, 283-302.                                                                                  | 3.9  | 33        |
| 15 | Constrained patterns of pollen use in Nearctic Andrena (Hymenoptera: Andrenidae) compared with their Palaearctic counterparts. Biological Journal of the Linnean Society, 2018, 124, 732-746.               | 1.6  | 29        |
| 16 | Dominance of honey bees is negatively associated with wild bee diversity in commercial apple<br>orchards regardless of management practices. Agriculture, Ecosystems and Environment, 2022, 323,<br>107697. | 5.3  | 25        |
| 17 | Honeybee dietary neonicotinoid exposure is associated with pollen collection from agricultural weeds. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190989.                         | 2.6  | 24        |
| 18 | Global patterns in bumble bee pollen collection show phylogenetic conservation of diet. Journal of<br>Animal Ecology, 2021, 90, 2421-2430.                                                                  | 2.8  | 24        |

Thomas J Wood

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A comparison of techniques for assessing farmland bumblebee populations. Oecologia, 2015, 177, 1093-1102.                                                                                                            | 2.0 | 23        |
| 20 | Synergism between local―and landscapeâ€level pesticides reduces wild bee floral visitation in<br>pollinatorâ€dependent crops. Journal of Applied Ecology, 2021, 58, 1187-1198.                                       | 4.0 | 20        |
| 21 | Unexpected levels of cryptic diversity in European bees of the genus Andrena subgenus Taeniandrena<br>(Hymenoptera, Andrenidae): implications for conservation. Journal of Hymenoptera Research, 0, 91,<br>375-428.  | 0.8 | 19        |
| 22 | Limited phenological and dietary overlap between bee communities in spring flowering crops and herbaceous enhancements. Ecological Applications, 2018, 28, 1924-1934.                                                | 3.8 | 18        |
| 23 | Revisions to the faunas of Andrena of the Iberian Peninsula and Morocco with the descriptions of four new species (Hymenoptera: Andrenidae). European Journal of Taxonomy, 0, 758, 147-193.                          | 0.6 | 16        |
| 24 | Camptopoeum (Camptopoeum) baldocki spec. nov., a new panurgine bee species from Portugal and a<br>description of the male of Flavipanurgus fuzetus Patiny (Andrenidae: Panurginae). Zootaxa, 2017, 4254,<br>285-293. | 0.5 | 13        |
| 25 | Updates to the bee fauna of Portugal with the description of three new Iberian Andrena species<br>(Hymenoptera: Apoidea: Anthophila). Zootaxa, 2020, 4790, zootaxa.4790.2.1.                                         | 0.5 | 13        |
| 26 | A worthy conservation target? Revising the status of the rarest bumblebee of Europe. Insect<br>Conservation and Diversity, 2021, 14, 661-674.                                                                        | 3.0 | 13        |
| 27 | Phenology and flowering overlap drive specialisation in plant–pollinator networks. Ecology Letters, 2021, 24, 2648-2659.                                                                                             | 6.4 | 13        |
| 28 | The bees of Lebanon (Hymenoptera: Apoidea: Anthophila). Zootaxa, 2021, 4976, 1146.                                                                                                                                   | 0.5 | 12        |
| 29 | From pastures to forests: Changes in Mediterranean wild bee communities after rural land abandonment. Insect Conservation and Diversity, 2022, 15, 325-336.                                                          | 3.0 | 8         |
| 30 | Ecological and genomic data reveal a hidden species. Zootaxa, 2018, 4521, 563-572.                                                                                                                                   | 0.5 | 5         |
| 31 | Comparative ecology of two specialist bees: Dasypoda visnaga Rossi, 1790 and Dasypoda maura Pérez,<br>1895 (Hymenoptera, Melittidae). Journal of Hymenoptera Research, 0, 81, 109-126.                               | 0.8 | 5         |
| 32 | Two new overlooked bee species from Spain (Hymenoptera: Anthophila: Andrenidae, Apidae). Osmia, 0,<br>10, 1-12.                                                                                                      | 0.0 | 5         |
| 33 | A revision of the <i>Andrena</i> (Hymenoptera: Andrenidae) of Lebanon with the description of six<br>new species. Annales De La Societe Entomologique De France, 2020, 56, 279-312.                                  | 0.9 | 4         |
| 34 | Description of a remarkable new <i>Andrena</i> species (Hymenoptera: Andrenidae) from Syria.<br>Zoology in the Middle East, 2020, 66, 262-268.                                                                       | 0.6 | 4         |
| 35 | Fifteen new Andrena species from little-visited arid, Mediterranean, and mountainous parts of the Old<br>World (Hymenoptera: Andrenidae). Zootaxa, 2021, 4933, zootaxa.4933.4.1.                                     | 0.5 | 4         |
| 36 | An update and revision of the Andrena fauna of Morocco (Hymenoptera, Apoidea, Andrenidae) with the<br>description of eleven new North African species. ZooKeys, 2020, 974, 31-92.                                    | 1.1 | 4         |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Discovery of a new <i>Cubiandrena</i> species in Turkey (Hymenoptera: Andrenidae). Zoology in the<br>Middle East, 2020, 66, 367-374.                                                                        | 0.6 | 2         |
| 38 | Andrena species (Hymenoptera: Apoidea: Andrenidae) from Western Algeria, with a preliminary<br>assessment of their pollen preferences. Annales De La Societe Entomologique De France, 2021, 57,<br>149-164. | 0.9 | 1         |