
Zhi-wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3124852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and photoluminescence properties of novel Ca2LaSbO6:Mn4+ double perovskite phosphor for plant growth LEDs. Ceramics International, 2019, 45, 4739-4746.	4.8	81
2	Highly efficient and thermally stable of a novel red phosphor Sr3NaSbO6:Mn4+ for indoor plant growth. Journal of Luminescence, 2019, 208, 201-207.	3.1	63
3	Synthesis and luminescence properties of novel LiSr4(BO3)3:Dy3+ phosphors. Ceramics International, 2013, 39, 1723-1728.	4.8	53
4	Enhanced novel orange red emission in Ca3(PO4)2:Sm3+ by charge compensation. Optics and Laser Technology, 2014, 62, 63-68.	4.6	50
5	Preparation and investigation of CaZr4(PO4)6:Dy3+ single-phase full-color phosphor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 1-6.	3.9	50
6	High-efficiency and thermally stable far-red emission of Mn4+ in double cubic perovskite Sr9Y2W4O24 for plant cultivation. Journal of Luminescence, 2019, 208, 307-312.	3.1	47
7	A novel red-emitting phosphor Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes. Current Applied Physics, 2015, 15, 248-252.	2.4	43
8	Tunable luminescence and energy transfer properties of LiSrPO4: Ce3+, Tb3+, Mn2+ phosphors. Journal of Alloys and Compounds, 2016, 682, 557-564.	5.5	41
9	Synthesis and characterizations of novel Ba 2 La 8 (SiO 4) 6 O 2 : Eu 3+ oxyapatite phosphors. Dyes and Pigments, 2017, 142, 272-276.	3.7	38
10	High-brightness Eu3+-doped Ca9Gd(PO4)7 red phosphor for NUV light-emitting diodes application. Materials Letters, 2016, 167, 250-253.	2.6	35
11	Synthesis and photoluminescence properties of novel Sr3LiSbO6:Mn4+ red phosphor for indoor plant growth. Optical Materials, 2019, 89, 609-614.	3.6	35
12	Highly efficient and thermally stable CaYMgSbO6:Mn4+ double perovskite red phosphor for indoor plant growth. Journal of Materials Science: Materials in Electronics, 2019, 30, 3107-3113.	2.2	35
13	A novel white emission in Ba10F2(PO4)6:Dy3+ single-phase full-color phosphor. Materials Chemistry and Physics, 2015, 151, 345-350.	4.0	33
14	Luminescent properties of Zn2+-doped CaAl12O19:Mn4+ deep-red phosphor for indoor plant cultivation. Ceramics International, 2019, 45, 8265-8270.	4.8	32
15	Sr2LaSbO6:Mn4+ far-red phosphor for plant cultivation: Synthesis, luminescence properties and emission enhancement by Al3+ ions. Journal of Luminescence, 2020, 221, 117091.	3.1	30
16	Enhanced novel orange red emission in LiSr4â^'x (BO3)3:xSm3+ by K+. Journal of Materials Science, 2014, 49, 2534-2541.	3.7	29
17	Enhanced novel white emission in Ca3(PO4)2:Dy3+ single-phase full-color phosphor by charge compensation. Journal of Materials Science: Materials in Electronics, 2015, 26, 1923-1931.	2.2	29
18	Effects of Ti4+- and W6+-substitution on photoluminescence properties of Sr2GdSbO6:Mn4+ phosphor for plant cultivation. Journal of Allovs and Compounds. 2020. 829. 154475.	5.5	27

ZHI-WEI ZHANG

#	Article	IF	CITATIONS
19	Far red-emitting double perovskite phosphors Ca2(1-x)Sr2xGdSbO6:Mn4+: Luminescence improvement based on composition modulation. Ceramics International, 2020, 46, 11379-11389.	4.8	25
20	Generation of bright white-light by energy-transfer strategy in Ca19Zn2(PO4)14:Ce3+, Tb3+, Mn2+ phosphors. Journal of Luminescence, 2019, 206, 244-249.	3.1	24
21	A novel Mn4+-activated garnet-type Li5La3Nb2O12 far red-emitting phosphor with high thermal stability for plant cultivation. Journal of Luminescence, 2020, 219, 116888.	3.1	23
22	A new strategy to the phosphors for plant growth LEDs: Far red emission from the Ca9MY0.667 (PO4)7 (M = Li, Na):Eu3+ phosphors due to the Eu3+: 5D0 → 7F4 transition. Journal of Luminescence, 2020, 225, 117404.	3.1	22
23	Synthesis and luminescent properties of a novel deep-red phosphor Sr2GdNbO6:Mn4+ for indoor plant growth lighting. Journal of Luminescence, 2020, 220, 116968.	3.1	21
24	A novel Al3+ modified Li6CaLa2Sb2O12:Mn4+ far-red-emitting phosphor with garnet structure for plant cultivation. Journal of Luminescence, 2020, 221, 117031.	3.1	21
25	Effects of Al3+-substitution on photoluminescence properties of Sr2YNbO6:Mn4+ far-red phosphor for plant cultivation. Journal of Luminescence, 2020, 218, 116828.	3.1	19
26	Influence of Al3+ ions on the enhancement of the fluorescence in the CaMoO4:Sm3+ phosphor. Optics and Laser Technology, 2014, 56, 348-353.	4.6	18
27	High-brightness Sm3+-doped La0.67Mg0.5W0.5O3 red phosphor for NUV light-emitting diodes application. Journal of Alloys and Compounds, 2016, 654, 146-150.	5.5	18
28	Tunable luminescence and energy transfer properties of Ca19Mg2(PO4)14:Ce3+, Tb3+, Mn2+ phosphors. Journal of Alloys and Compounds, 2017, 708, 671-677.	5.5	18
29	Luminescence properties of a novel promising red phosphor LiY 9 (SiO 4) 6 O 2 :Eu 3+. Materials Letters, 2017, 204, 101-103.	2.6	17
30	Photoluminescence properties of a novel red emitting Sr7Zr(PO4)6:Eu3+ phosphor. Optical Materials, 2014, 37, 866-869.	3.6	16
31	Preparation and investigation of Ca2.96(P0.99B0.01O4)2:0.04Dy3+ single-phase full-color phosphor. Materials Letters, 2014, 117, 14-16.	2.6	14
32	Photoluminescence properties of a novel red emitting Ba 10 F 2 (PO 4) 6 :Eu 3+ phosphor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 145, 194-197.	3.9	14
33	Synthesis and photoluminescence properties of a novel Ca2LaNbO6:Mn4+ double perovskite phosphor for plant growth LEDs. Journal of Materials Science: Materials in Electronics, 2019, 30, 15504-15511.	2.2	14
34	Charge compensation assisted enhanced photoluminescence derived from Al3+-codoped NaLaMgWO6:Mn4+ phosphors for plant growth lighting applications. Journal of Luminescence, 2020, 226, 117438.	3.1	14
35	Systematic studies on Ca19M2(PO4)14:Eu3+ (MÂ= Mg, Zn) phosphors: Effects of M cation on photoluminescence. Journal of Alloys and Compounds, 2020, 844, 156070.	5.5	14
36	A novel blue-emitting Sr2Gd8(SiO4)6O2:Bi3+ phosphor with oxyapatite structure. Inorganic Chemistry Communication, 2021, 124, 108372.	3.9	14

ZHI-WEI ZHANG

#	Article	IF	CITATIONS
37	NaLa2SbO6:Mn4+ far-red phosphor: Synthesis, luminescence properties and emission enhancement by Al3+ ions. Journal of Luminescence, 2020, 219, 116865.	3.1	13
38	High-brightness Eu3+-doped La0.67Mg0.5W0.5O3 red phosphor for NUV light-emitting diodes application. Materials Letters, 2015, 160, 302-304.	2.6	12
39	High-brightness Ca9NaGd0.667(1â^'x)(PO4)7:xEu3+ red phosphor for NUV light-emitting diodes application. Journal of Alloys and Compounds, 2017, 695, 3220-3224.	5.5	12
40	Highly efficient and thermally stable CaMgLaSbO6:Mn4+ red phosphor for indoor plant growth. Inorganic Chemistry Communication, 2019, 110, 107607.	3.9	12
41	Preparation and investigation of (Sr0.85Mg0.14)3(P1â^'xSixO4)2: Dy3+ single-phase full-color phosphor. Materials Letters, 2013, 90, 1-3.	2.6	11
42	Preparation and luminescence properties of Sr7Zr(PO4)6:Dy3+ single-phase full-color phosphor. Journal of Materials Science: Materials in Electronics, 2015, 26, 4202-4206.	2.2	11
43	Tunable white light emission from singleâ€phased Li ₂ SrSiO ₄ :Dy ³⁺ phosphors by coâ€doping with Eu ³⁺ . Luminescence, 2015, 30, 72-78.	2.9	10
44	A novel promising red phosphor Ca9LiBi0.667(PO4)7:Eu3+ with excellent responsiveness to phytochrome PFR for the indoor plant cultivation. Journal of Molecular Structure, 2020, 1210, 127998.	3.6	10
45	Synthesis and photoluminescence properties of ALa 9 (SiO 4) 6 O 2 : Eu 3+ (A = Li, Na) red phosphor. Materials Research Bulletin, 2017, 94, 147-153.	5.2	9
46	A Comparative Study on the Photoluminescence Properties of Sr3RE2(BO3)4:Eu3+ (RE = Y, Gd) Red Phosphors with High Quenching Concentration and Intensity of 5D0 → 7F4 Transition. Journal of Electronic Materials, 2019, 48, 5143-5153.	2.2	9
47	Mn4+ doped tetratungstate Sr9Gd2W4O24 far-red phosphor: Synthesis, luminescence properties, and potential applications in indoor plant cultivation. Journal of Luminescence, 2020, 220, 117027.	3.1	9
48	Luminescence properties and energy transfer in Ce3+ and Tb3+ co-doped Sr5(PO4)2SiO4 phosphor. Journal of Luminescence, 2020, 223, 117253.	3.1	9
49	Synthesis and luminescence of Eu ³⁺ â€doped in triple phosphate Ca ₈ MgBi(PO ₄) ₇ with whitlockite structure. Luminescence, 2015, 30, 1190-1194.	2.9	8
50	A dual-emission Ca9MgLi(PO4)7: Ce3+, Mn2+ phosphor with energy transfer for plant-lighting. Optical Materials, 2020, 108, 110201.	3.6	8
51	A novel single-phased Sr4La6(SiO4)6Cl2:Dy3+ phosphor for white-light-emitting diodes. Inorganic Chemistry Communication, 2020, 117, 107948.	3.9	8
52	Fabrication of ZnSn(OH)6/ZnO/BiOBr with high photocatalytic efficiency in removal of various organic pollutants. Journal of Alloys and Compounds, 2022, 896, 162920.	5.5	8
53	Photoluminescence properties of a novel red emitting NaLaTi2O6:Eu3+ phosphor. Journal of Materials Science: Materials in Electronics, 2016, 27, 724-729.	2.2	7
54	Systematic studies on Sr4La6(SiO4)6M2:Eu3+ (M = F/Cl) phosphors: effects of the halogen anions on photoluminescence. Journal of Materials Science: Materials in Electronics, 2019, 30, 1803-1812.	2.2	6

ZHI-WEI ZHANG

#	Article	IF	CITATIONS
55	Comparative study of the luminescence properties of Ca2+xLa8-x(SiO4)6-x(PO4)xO2:Eu3+ (x = 0, 2) red phosphors. Journal of Luminescence, 2020, 221, 117043.	3.1	5
56	Finding a novel Ca2M3(SiO4)2(PO4)O (M = La, Y):Eu3+ red-emitting phosphor with positive responsiveness to phytochrome: Application in plant cultivation. Journal of Luminescence, 2021, 237, 118151.	3.1	5
57	Luminescence properties of the NaLaMg0.92Ca0.08WO6:Sm3+ red phosphor. Journal of Materials Science: Materials in Electronics, 2017, 28, 16755-16761.	2.2	4
58	Red-emitting LaOF:Eu3+ phosphor modified by tetraethyl orthosilicate to boost the Luminescence intensity for LEDs. Optik, 2020, 223, 165574.	2.9	4
59	Synthesis and photoluminescence properties of high thermal stability Mn4+ in orthorhombic SrLa2Mg2W2O12 red phosphor for warm w-LEDs. Journal of Materials Science: Materials in Electronics, 2020, 31, 4677-4686.	2.2	4
60	Investigation of luminescence properties and the energy transfer mechanism of LiSrBO3: Ce3+, Tb3+ phosphors. Journal of Materials Science: Materials in Electronics, 2016, 27, 6925-6931.	2.2	3
61	Photoluminescence of a novel red emitting phosphor LiLaMgWO6 : Eu3+. Russian Journal of Physical Chemistry A, 2017, 91, 785-790.	0.6	3
62	Comparative study of the Eu3+ luminescence in the AGd9(SiO4)6O2 (A = Li, Na) red phosphor with high color purity and brightness. Journal of Materials Science: Materials in Electronics, 2019, 30, 19561-19568.	2.2	3
63	BiOBr@SBA-15 system as a novel photocatalyst with high photocatalytic performance. Materials Letters, 2020, 278, 128462.	2.6	3
64	Multicolor-tunable Ca8MgBi(PO4)7: Ce3+, Tb3+, Mn2+ phosphors under dual-channel excitation. Journal of Materials Science: Materials in Electronics, 2020, 31, 12880-12891.	2.2	3
65	Synthesis and luminescence properties of La0.67Mg0.5W0.5O3:Tb3+ green phosphors. Journal of Materials Science: Materials in Electronics, 2017, 28, 9798-9803.	2.2	2
66	Photoluminescence Properties of Novel Far-Red Emission Ca3Gd2W2O12:Mn4+ Phosphor. Russian Journal of Physical Chemistry A, 2019, 93, 2306-2313.	0.6	2
67	Synthesis and luminescence properties of CaLaMgNbO6:Mn4+ red phosphor for UV-based w-LEDs. Modern Physics Letters B, 2019, 33, 1950426.	1.9	2
68	A new strategy to the NaY(MoO4)2:Eu3+ phosphors modified by tetraethyl orthosilicate for LEDs: Photoludminescence properties and morphology. Optik, 2020, 217, 164872.	2.9	2
69	Synthesis and Properties of Ca2La3(SiO4)2(PO4)O:Dy3+ Single-Phase Full-Color Phosphor. Russian Journal of Physical Chemistry A, 2020, 94, 1230-1233.	0.6	2
70	Construction of Fe9S10@Fe2O3@Fe3S4 conductor-semiconductor type heterojunction as photoactivator of peroxymonosulfate toward the degradation of Malachite Green. Chemical Physics Letters, 2021, 781, 139001.	2.6	2
71	High photocatalytic performance of Bi2O(OH)2SO4: Based on dual anion synergistic effect. Materials Letters, 2021, 284, 128899.	2.6	0
72	Realizing a Novel Red-Emitting Ca0.99MoO4:0.01Eu3+, Al3+ Phosphor: Charge Compensation, Molten Salt Synthesis. Russian Journal of Physical Chemistry A, 2021, 95, S149-S155.	0.6	0