Stephen M Tompkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3124824/publications.pdf Version: 2024-02-01

		126907	114465
107	4,528	33	63
papers	citations	h-index	g-index
117	117	117	5950
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Characterization of an immediate-early gene induced in adherent monocytes that encodes ll̂ºB-like activity. Cell, 1991, 65, 1281-1289.	28.9	761
2	Protection against lethal influenza virus challenge by RNA interference <i>in vivo</i> . Proceedings of the United States of America, 2004, 101, 8682-8686.	7.1	366
3	Matrix Protein 2 Vaccination and Protection against Influenza Viruses, Including Subtype H5N1. Emerging Infectious Diseases, 2007, 13, 426-435.	4.3	256
4	De Novo Central Nervous System Processing of Myelin Antigen Is Required for the Initiation of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2002, 168, 4173-4183.	0.8	176
5	Orally Efficacious Broad-Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	162
6	Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nature Chemical Biology, 2022, 18, 81-90.	8.0	141
7	One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles. Analyst, The, 2011, 136, 3083.	3.5	136
8	Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2. ACS Central Science, 2021, 7, 1009-1018.	11.3	113
9	Verdinexor, a Novel Selective Inhibitor of Nuclear Export, Reduces Influenza A Virus Replication <i>In Vitro</i> and <i>In Vivo</i> . Journal of Virology, 2014, 88, 10228-10243.	3.4	96
10	Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. Journal of General Virology, 2012, 93, 2346-2356.	2.9	90
11	Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1). Virology, 2011, 413, 169-182.	2.4	71
12	Interferon Lambda Upregulates IDO1 Expression in Respiratory Epithelial Cells After Influenza Virus Infection. Journal of Interferon and Cytokine Research, 2015, 35, 554-562.	1.2	62
13	Recombinant parainfluenza virus 5 (PIV5) expressing the influenza A virus hemagglutinin provides immunity in mice to influenza A virus challenge. Virology, 2007, 362, 139-150.	2.4	60
14	Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5–based COVID-19 vaccine. Science Advances, 2021, 7, .	10.3	60
15	Identification of Host Kinase Genes Required for Influenza Virus Replication and the Regulatory Role of MicroRNAs. PLoS ONE, 2013, 8, e66796.	2.5	55
16	A europium fluoroimmunoassay for measuring binding of antigen to class II MHC glycoproteins. Journal of Immunological Methods, 1993, 163, 209-216.	1.4	53
17	Induction and Role of Indoleamine 2,3 Dioxygenase in Mouse Models of Influenza A Virus Infection. PLoS ONE, 2013, 8, e66546.	2.5	53
18	Host gene targets for novel influenza therapies elucidated by highâ€ŧhroughput RNA interference screens. FASEB Journal, 2012, 26, 1372-1386.	0.5	52

#	Article	IF	CITATIONS
19	Inhibition of indoleamine 2,3-dioxygenase enhances the T-cell response to influenza virus infection. Journal of General Virology, 2013, 94, 1451-1461.	2.9	52
20	Moving Forward: Recent Developments for the Ferret Biomedical Research Model. MBio, 2018, 9, .	4.1	52
21	Transporters Associated with Antigen Processing (TAP)-independent Presentation of Soluble Insulin to α/β T Cells by the Class Ib Gene Product, Qa-1b. Journal of Experimental Medicine, 1998, 188, 961-971.	8.5	47
22	Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection. Virology, 2010, 399, 280-289.	2.4	46
23	Novel H7N9 Influenza Virus Shows Low Infectious Dose, High Growth Rate, and Efficient Contact Transmission in the Guinea Pig Model. Journal of Virology, 2014, 88, 1502-1512.	3.4	45
24	Avian Influenza Viruses Infect Primary Human Bronchial Epithelial Cells Unconstrained by Sialic Acid α2,3 Residues. PLoS ONE, 2011, 6, e21183.	2.5	45
25	Targeting Organic Anion Transporter 3 with Probenecid as a Novel Anti-Influenza A Virus Strategy. Antimicrobial Agents and Chemotherapy, 2013, 57, 475-483.	3.2	44
26	Single-Dose Vaccination of a Recombinant Parainfluenza Virus 5 Expressing NP from H5N1 Virus Provides Broad Immunity against Influenza A Viruses. Journal of Virology, 2013, 87, 5985-5993.	3.4	44
27	Cold-Adapted Influenza and Recombinant Adenovirus Vaccines Induce Cross-Protective Immunity against pH1N1 Challenge in Mice. PLoS ONE, 2011, 6, e21937.	2.5	42
28	Recombinant Parainfluenza Virus 5 Vaccine Encoding the Influenza Virus Hemagglutinin Protects against H5N1 Highly Pathogenic Avian Influenza Virus Infection following Intranasal or Intramuscular Vaccination of BALB/c Mice. Journal of Virology, 2013, 87, 363-371.	3.4	42
29	Replication and pathogenesis associated with H5N1, H5N2, and H5N3 low-pathogenic avian influenza virus infection in chickens and ducks. Archives of Virology, 2009, 154, 1241-1248.	2.1	40
30	MicroRNA Regulation of Human Protease Genes Essential for Influenza Virus Replication. PLoS ONE, 2012, 7, e37169.	2.5	40
31	Virus-Vectored Influenza Virus Vaccines. Viruses, 2014, 6, 3055-3079.	3.3	40
32	Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge. Journal of Virology, 2013, 87, 354-362.	3.4	38
33	Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection. PLoS Pathogens, 2016, 12, e1005478.	4.7	38
34	Theiler's Virusâ€Mediated Autoimmunity. Annals of the New York Academy of Sciences, 2002, 958, 26-38.	3.8	35
35	Identification of altered MicroRNA expression in canine lymphoid cell lines and cases of B―and Tâ€Cell lymphomas. Genes Chromosomes and Cancer, 2011, 50, 950-967.	2.8	35
36	Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game. Journal of Virology, 2016, 90, 1694-1704.	3.4	35

#	Article	IF	CITATIONS
37	Broadly Reactive Human Monoclonal Antibodies Elicited following Pandemic H1N1 Influenza Virus Exposure Protect Mice against Highly Pathogenic H5N1 Challenge. Journal of Virology, 2018, 92, .	3.4	33
38	Animal Models for Evaluation of Influenza Vaccines. Current Topics in Microbiology and Immunology, 2009, 333, 397-412.	1.1	31
39	Genetic control of immune responses to influenza A matrix 2 protein (M2). Vaccine, 2010, 28, 5817-5827.	3.8	30
40	Coated protein nanoclusters from influenza H7N9 HA are highly immunogenic and induce robust protective immunity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 253-262.	3.3	30
41	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	4.7	29
42	An insulin peptide that binds an alternative site in class II major histocompatibility complex Journal of Experimental Medicine, 1996, 183, 857-866.	8.5	28
43	Comparative Pathology in Ferrets Infected with H1N1 Influenza A Viruses Isolated from Different Hosts. Journal of Virology, 2011, 85, 7572-7581.	3.4	27
44	Efficacy of Parainfluenza Virus 5 Mutants Expressing Hemagglutinin from H5N1 Influenza A Virus in Mice. Journal of Virology, 2013, 87, 9604-9609.	3.4	27
45	Indoleamine 2,3-Dioxygenase (IDO) Activity During the Primary Immune Response to Influenza Infection Modifies the Memory T Cell Response to Influenza Challenge. Viral Immunology, 2014, 27, 112-123.	1.3	27
46	Low Pathogenic Avian Influenza Isolates from Wild Birds Replicate and Transmit via Contact in Ferrets without Prior Adaptation. PLoS ONE, 2012, 7, e38067.	2.5	26
47	Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge. Journal of Virology, 2017, 91, .	3.4	26
48	siRNA Genome Screening Approaches to Therapeutic Drug Repositioning. Pharmaceuticals, 2013, 6, 124-160.	3.8	25
49	Memory T Cells Generated by Prior Exposure to Influenza Cross React with the Novel H7N9 Influenza Virus and Confer Protective Heterosubtypic Immunity. PLoS ONE, 2015, 10, e0115725.	2.5	25
50	A humanized anti-M2 scFv shows protective in vitro activity against influenza. Protein Engineering, Design and Selection, 2008, 22, 189-198.	2.1	24
51	Gain-of-function experiments on H7N9. Nature, 2013, 500, 150-151.	27.8	24
52	Gain-of-Function Experiments on H7N9. Science, 2013, 341, 612-613.	12.6	24
53	Aerosol Inoculation with a Sub-lethal Influenza Virus Leads to Exacerbated Morbidity and Pulmonary Disease Pathogenesis. Viral Immunology, 2011, 24, 131-142.	1.3	22
54	Bat cells from <i><scp>P</scp>teropus alecto</i> are susceptible to influenza <scp>A</scp> virus infection and reassortment. Influenza and Other Respiratory Viruses, 2013, 7, 900-903.	3.4	22

#	Article	IF	CITATIONS
55	Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets. MAbs, 2014, 6, 460-473.	5.2	22
56	Environmental Stability of Swine and Human Pandemic Influenza Viruses in Water under Variable Conditions of Temperature, Salinity, and pH. Applied and Environmental Microbiology, 2016, 82, 3721-3726.	3.1	22
57	An array of possibilities for multiple sclerosis. Nature Medicine, 2002, 8, 451-453.	30.7	21
58	Identification of Virulence Determinants in Influenza Viruses. Analytical Chemistry, 2014, 86, 6911-6917.	6.5	21
59	Nebulized live-attenuated influenza vaccine provides protection in ferrets at a reduced dose. Vaccine, 2012, 30, 3026-3033.	3.8	20
60	Targeting Cell Division Cycle 25 Homolog B To Regulate Influenza Virus Replication. Journal of Virology, 2013, 87, 13775-13784.	3.4	20
61	Hydrophobic Inactivation of Influenza Viruses Confers Preservation of Viral Structure with Enhanced Immunogenicity. Journal of Virology, 2008, 82, 4612-4619.	3.4	19
62	Adenovirus 36, adiposity, and bone strength in late-adolescent females. Journal of Bone and Mineral Research, 2013, 28, 489-496.	2.8	17
63	Efficacy of a Parainfluenza Virus 5 (PIV5)-Based H7N9 Vaccine in Mice and Guinea Pigs: Antibody Titer towards HA Was Not a Good Indicator for Protection. PLoS ONE, 2015, 10, e0120355.	2.5	17
64	Aerosol vaccination induces robust protective immunity to homologous and heterologous influenza infection in mice. Vaccine, 2011, 29, 2568-2575.	3.8	16
65	Antiviral Responses by Swine Primary Bronchoepithelial Cells Are Limited Compared to Human Bronchoepithelial Cells Following Influenza Virus Infection. PLoS ONE, 2013, 8, e70251.	2.5	16
66	Potential directions for chicken immunology research. Developmental and Comparative Immunology, 2013, 41, 463-468.	2.3	15
67	Influenza A Virus Hemagglutinin and Other Pathogen Glycoprotein Interactions with NK Cell Natural Cytotoxicity Receptors NKp46, NKp44, and NKp30. Viruses, 2021, 13, 156.	3.3	15
68	Drug analog inhibition of indoleamine 2,3-dioxygenase (IDO) activity modifies pattern recognition receptor expression and proinflammatory cytokine responses early during influenza virus infection. Journal of Leukocyte Biology, 2014, 96, 447-452.	3.3	14
69	Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model. Journal of Virology, 2017, 91, .	3.4	14
70	Passage of low-pathogenic avian influenza (LPAI) viruses mediates rapid genetic adaptation of a wild-bird isolate in poultry. Archives of Virology, 2011, 156, 565-576.	2.1	13
71	Antiviral Effects of Inhibiting Host Gene Expression. Current Topics in Microbiology and Immunology, 2014, 386, 459-477.	1.1	13
72	Therapeutic Applications of RNAi for Silencing Virus Replication. Methods in Molecular Biology, 2009, 555, 43-61.	0.9	13

#	Article	IF	CITATIONS
73	Theiler's virus-mediated autoimmunity: local presentation of CNS antigens and epitope spreading. Annals of the New York Academy of Sciences, 2002, 958, 26-38.	3.8	13
74	H7N9 influenza A virus in turkeys in Minnesota. Journal of General Virology, 2015, 96, 269-276.	2.9	12
75	Influenza Pathogenesis in Genetically Defined Resistant and Susceptible Murine Strains . Yale Journal of Biology and Medicine, 2017, 90, 471-479.	0.2	12
76	Recombinant vaccines for influenza virus. Current Opinion in Investigational Drugs, 2008, 9, 836-45.	2.3	10
77	Domestic Cats Are Susceptible to Infection With Low Pathogenic Avian Influenza Viruses From Shorebirds. Veterinary Pathology, 2013, 50, 39-45.	1.7	9
78	Intranasal powder live attenuated influenza vaccine is thermostable, immunogenic, and protective against homologous challenge in ferrets. Npj Vaccines, 2021, 6, 59.	6.0	9
79	A Novel Influenza Virus Hemagglutinin-Respiratory Syncytial Virus (RSV) Fusion Protein Subunit Vaccine against Influenza and RSV. Journal of Virology, 2013, 87, 10792-10804.	3.4	8
80	Surveillance of feral cats for influenza A virus in North Central Florida. Influenza and Other Respiratory Viruses, 2012, 6, 341-347.	3.4	7
81	Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses. Future Virology, 2013, 8, 25-41.	1.8	7
82	IN OVO AND IN VITRO SUSCEPTIBILITY OF AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) TO AVIAN INFLUENZA VIRUS INFECTION. Journal of Wildlife Diseases, 2015, 51, 187-198.	0.8	7
83	Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression. Journal of Virology, 2015, 89, 5651-5667.	3.4	7
84	Matrix Protein 2 Extracellular Domain-Specific Monoclonal Antibodies Are an Effective and Potentially Universal Treatment for Influenza A. Journal of Virology, 2021, 95, .	3.4	7
85	Polymerase Discordance in Novel Swine Influenza H3N2v Constellations Is Tolerated in Swine but Not Human Respiratory Epithelial Cells. PLoS ONE, 2014, 9, e110264.	2.5	7
86	Experimental Infection of European Starlings (Sturnus vulgaris) and House Sparrows (Passer) Tj ETQq0 0 0 rgBT /G Journal of Wildlife Diseases, 2013, 49, 437-440.	Overlock 1 0.8	10 Tf 50 227 6
87	Detection of neuraminidase stalk motifs associated with enhanced N1 subtype influenza A virulence via Raman spectroscopy. Analyst, The, 2015, 140, 7748-7760.	3.5	6
88	Serial passage in ducks of a low-pathogenic avian influenza virus isolated from a chicken reveals a high mutation rate in the hemagglutinin that is likely due to selection in the host. Archives of Virology, 2015, 160, 2455-2470.	2.1	5
89	Developing a platform system for gene delivery: amplifying virus-like particles (AVLP) as an influenza vaccine. Npj Vaccines, 2017, 2, 32.	6.0	5
90	Comparison of Microchip Transponder and Noncontact Infrared Thermometry with Rectal Thermometry in Domestic Swine (Sus scrofa domestica). Journal of the American Association for Laboratory Animal Science, 2016, 55, 588-93.	1.2	5

#	Article	IF	CITATIONS
91	Evaluation of a SARS-CoV-2 Capture IgM Antibody Assay in Convalescent Sera. Microbiology Spectrum, 2021, 9, e0045821.	3.0	3
92	Immunogenicity of Avian H5N1 Influenza Virus Recombinant Vaccines in Cats. Viral Immunology, 2010, 23, 221-226.	1.3	2
93	Subsisting H1N1 influenza memory responses are insufficient to protect from pandemic H1N1 influenza challenge in C57BL/6 mice. Journal of General Virology, 2013, 94, 1701-1711.	2.9	2
94	Enhanced generation of influenza-specific tissue resident memory CD8 T cells in NK-depleted mice. Scientific Reports, 2021, 11, 8969.	3.3	2
95	Response to Protocol Review Scenario: Why use ferrets?. Lab Animal, 2008, 37, 346-346.	0.4	0
96	Revised model for early memory T-cell protection against respiratory virus challenge. Future Virology, 2008, 3, 533-536.	1.8	0
97	Evaluation of a New Viral Vaccine Vector in Mice and Rhesus Macaques: J Paramyxovirus Expressing Hemagglutinin of Influenza A Virus H5N1. Journal of Virology, 2021, 95, e0132121.	3.4	0
98	miRNA Profiles of Canine Lymphoid Cell Lines. FASEB Journal, 2009, 23, 361.3.	0.5	0
99	Immunogenicity of Avian H5N1 Influenza Virus Recombinant Vaccines in Cats. FASEB Journal, 2010, 24, 422.7.	0.5	0
100	Influenza research and development: GTCBio's Third Annual Conference (July 9-11 - Boston,) Tj ETQqO 0 0 rgBT /0	Overlock 1 1.1	10 Tf 50 382 T
101	Novel Rigid Glycomimetics to Inhibit Influenza Infection. FASEB Journal, 2019, 33, .	0.5	0
102	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
103	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
104	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
105	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
106	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0