
John P Sundberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3124816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature, 2011, 471, 637-641.	13.7	655
2	Prostate Pathology of Genetically Engineered Mice: Definitions and Classification. The Consensus Report from the Bar Harbor Meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Research, 2004, 64, 2270-2305.	0.4	530
3	A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nature Genetics, 2009, 41, 602-608.	9.4	438
4	Alopecia areata. Nature Reviews Disease Primers, 2017, 3, 17011.	18.1	435
5	Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell, 2009, 8, 277-287.	3.0	359
6	Desmoglein 4 in Hair Follicle Differentiation and Epidermal Adhesion. Cell, 2003, 113, 249-260.	13.5	301
7	Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. American Journal of Physiology - Renal Physiology, 1998, 274, G544-G551.	1.6	249
8	Scd1 is expressed in sebaceous glands and is disrupted in the asebia mouse. Nature Genetics, 1999, 23, 268-270.	9.4	229
9	Glycerol Regulates Stratum Corneum Hydration in Sebaceous Gland Deficient (Asebia) Mice. Journal of Investigative Dermatology, 2003, 120, 728-737.	0.3	197
10	Targeted Ablation of the Abcc6 Gene Results in Ectopic Mineralization of Connective Tissues. Molecular and Cellular Biology, 2005, 25, 8299-8310.	1.1	193
11	Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology, 1994, 107, 1726-1735.	0.6	187
12	SHARPIN is an endogenous inhibitor of β1-integrin activation. Nature Cell Biology, 2011, 13, 1315-1324.	4.6	184
13	Loss of Normal Profilaggrin and Filaggrin in Flaky Tail (ft/ft) Mice: an Animal Model for the Filaggrin-Deficient Skin Disease Ichthyosis Vulgaris. Journal of Investigative Dermatology, 2000, 115, 1072-1081.	0.3	175
14	Asebia-2J (Scd1ab2J): A New Allele and a Model for Scarring Alopecia. American Journal of Pathology, 2000, 156, 2067-2075.	1.9	161
15	Alopecia Areata in Aging C3H/HeJ Mice. Journal of Investigative Dermatology, 1994, 102, 847-856.	0.3	159
16	Experimental Induction of Alopecia Areata-Like Hair Loss in C3H/HeJ Mice Using Full-Thickness Skin Grafts. Journal of Investigative Dermatology, 1998, 111, 797-803.	0.3	129
17	Gene Array Profiling and Immunomodulation Studies Define a Cell-Mediated Immune Response Underlying the Pathogenesis of Alopecia Areata in a Mouse Model and Humans. Journal of Investigative Dermatology, 2002, 119, 392-402.	0.3	100
18	Genetic Analysis of Susceptibility to Dextran Sulfate Sodium-Induced Colitis in Mice. Genomics, 1999, 55, 147-156.	1.3	94

#	Article	IF	CITATIONS
19	Refined histopathologic scoring system improves power todetect colitis QTL in mice. Mammalian Genome, 2004, 15, 865-871.	1.0	86
20	Mutant <i>Enpp1asj</i> mice as a model for generalized arterial calcification of infancy. DMM Disease Models and Mechanisms, 2013, 6, 1227-35.	1.2	80
21	Comparison of Alopecia areata in Human and Nonhuman Mammalian Species. Pathobiology, 1998, 66, 90-107.	1.9	78
22	Evidence That the Satin Hair Mutant Gene Foxq1 Is among Multiple and Functionally Diverse Regulatory Targets for Hoxc13 during Hair Follicle Differentiation. Journal of Biological Chemistry, 2006, 281, 29245-29255.	1.6	78
23	The mouse as a model for understanding chronic diseases of aging: the histopathologic basis of aging in inbred mice. Pathobiology of Aging & Age Related Diseases, 2011, 1, 7179.	1.1	78
24	Heritable susceptibility for colitis in mice induced by IL-10 deficiency. Inflammatory Bowel Diseases, 2000, 6, 290-302.	0.9	67
25	The Nude Mutant Gene Foxn1 Is a HOXC13 Regulatory Target during Hair Follicle and Nail Differentiation. Journal of Investigative Dermatology, 2011, 131, 828-837.	0.3	66
26	Autoantibodies to Hair Follicles in C3H/HeJ Mice With Alopecia Areata–Like Hair Loss. Journal of Investigative Dermatology, 1997, 109, 329-333.	0.3	64
27	A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice. Human Molecular Genetics, 2008, 17, 3539-3551.	1.4	63
28	Antibodies that Label Paraffin-Embedded Mouse Tissues: A Collaborative Endeavor. Toxicologic Pathology, 2004, 32, 181-191.	0.9	60
29	The C3H/HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results. Experimental Dermatology, 2008, 17, 793-805.	1.4	60
30	The Mouse Tumor Biology database. Nature Reviews Cancer, 2008, 8, 459-465.	12.8	60
31	Heritable Susceptibility for Colitis in Mice Induced by IL-10 Deficiency. Inflammatory Bowel Diseases, 2000, 6, 290-302.	0.9	57
32	FOXN1 Is Critical for Onycholemmal Terminal Differentiation in Nude (Foxn1nu) Mice. Journal of Investigative Dermatology, 2004, 123, 1001-1011.	0.3	57
33	Genetics of Colitis Susceptibility in IL-10-Deficient Mice: Backcross versus F2 Results Contrasted by Principal Component Analysis. Genomics, 2002, 80, 274-282.	1.3	56
34	Adult-Onset Alopecia Areata Is a Complex Polygenic Trait in the C3H/HeJ Mouse Model. Journal of Investigative Dermatology, 2004, 123, 294-297.	0.3	55
35	SHARPIN is a key regulator of immune and inflammatory responses. Journal of Cellular and Molecular Medicine, 2012, 16, 2271-2279.	1.6	55
36	SHARPIN Regulates Uropod Detachment in Migrating Lymphocytes. Cell Reports, 2013, 5, 619-628.	2.9	55

#	Article	IF	CITATIONS
37	Hair Follicle Biology, the Sebaceous Gland, and Scarring Alopecias. Archives of Dermatology, 1999, 135, 973-4.	1.7	54
38	Mouse Tumor Biology (MTB): a database of mouse models for human cancer. Nucleic Acids Research, 2015, 43, D818-D824.	6.5	54
39	Immune Status, Strain Background, and Anatomic Site of Inoculation Affect Mouse Papillomavirus (MmuPV1) Induction of Exophytic Papillomas or Endophytic Trichoblastomas. PLoS ONE, 2014, 9, e113582.	1.1	53
40	Full-Thickness Skin Grafts from Flaky Skin Mice to Nude Mice: Maintenance of the Psoriasiform Phenotype. Journal of Investigative Dermatology, 1994, 102, 781-788.	0.3	51
41	Development and Progression of Psoriasif orm Dermatitis and Systemic Lesions in the Flaky Skin (<i>fsn</i>) Mouse Mutant. Pathobiology, 1997, 65, 271-286.	1.9	51
42	Chronic Proliferative Dermatitis in Sharpin Null Mice: Development of an Autoinflammatory Disease in the Absence of B and T Lymphocytes and IL4/IL13 Signaling. PLoS ONE, 2014, 9, e85666.	1.1	51
43	The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer. Cancer Research, 2017, 77, e67-e70.	0.4	50
44	Pathbase: a database of mutant mouse pathology. Nucleic Acids Research, 2004, 32, 512D-515.	6.5	49
45	Endogenous Retinoids in the Pathogenesis of Alopecia Areata. Journal of Investigative Dermatology, 2013, 133, 334-343.	0.3	49
46	Mouse Mutations as Animal Models and Biomedical Tools for Dermatological Research. Journal of Investigative Dermatology, 1996, 106, 368-376.	0.3	48
47	Inhibition of NF-κB Signaling Retards Eosinophilic Dermatitis in SHARPIN-Deficient Mice. Journal of Investigative Dermatology, 2011, 131, 141-149.	0.3	48
48	Abcc6 Knockout Rat Model Highlights theÂRole of Liver in PPi Homeostasis inÂPseudoxanthoma Elasticum. Journal of Investigative Dermatology, 2017, 137, 1025-1032.	0.3	48
49	Inherited Mouse Mutations as Models of Human Adnexal, Cornification, and Papulosquamous Dermatoses. Journal of Investigative Dermatology, 1990, 95, S62-S63.	0.3	47
50	Major Locus on Mouse Chromosome 17 and Minor Locus on Chromosome 9 are Linked with Alopecia Areata in C3H/HeJ Mice. Journal of Investigative Dermatology, 2003, 120, 771-775.	0.3	46
51	Spontaneous Alopecia Areata-Like Hair Loss in One Congenic and Seven Inbred Laboratory Mouse Strains. Journal of Investigative Dermatology Symposium Proceedings, 1999, 4, 202-206.	0.8	45
52	The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP. PLoS Genetics, 2020, 16, e1008884.	1.5	45
53	Molecular Identification of Collagen 17a1 as a Major Genetic Modifier of Laminin Gamma 2 Mutation-Induced Junctional Epidermolysis Bullosa in Mice. PLoS Genetics, 2014, 10, e1004068.	1.5	44
54	Juxta-articular joint-capsule mineralization in CD73 deficient mice: Similarities to patients with <i>NT5E</i> mutations. Cell Cycle, 2014, 13, 2609-2615.	1.3	44

#	Article	IF	CITATIONS
55	Integrating mouse anatomy and pathology ontologies into a phenotyping database: Tools for data capture and training. Mammalian Genome, 2008, 19, 413-419.	1.0	42
56	Increased Expression of Cxcr3 and Its Ligands, Cxcl9 and Cxcl10, during the Development of Alopecia Areata in the Mouse. Journal of Investigative Dermatology, 2012, 132, 1736-1738.	0.3	41
57	Analysis of Hair Follicles in Mutant Laboratory Mice. Journal of Investigative Dermatology Symposium Proceedings, 2005, 10, 264-270.	0.8	39
58	Phenotype ontologies for mouse and man: bridging the semantic gap. DMM Disease Models and Mechanisms, 2010, 3, 281-289.	1.2	39
59	The Mouse Tumor Biology Database: a public resource for cancer genetics and pathology of the mouse. Cancer Research, 2002, 62, 1235-40.	0.4	39
60	Klebsiella oxytoca: opportunistic infections in laboratory rodents. Laboratory Animals, 2008, 42, 369-375.	0.5	38
61	Identification of <i>Fat4</i> and <i>Tsc22d1</i> as Novel Candidate Genes for Spontaneous Pulmonary Adenomas. Cancer Research, 2011, 71, 5779-5791.	0.4	38
62	Comparative Anatomy of Mouse and Human Nail Units. Anatomical Record, 2013, 296, 521-532.	0.8	38
63	Lanceolate Hair (lah): A Recessive Mouse Mutation with Alopecia and Abnormal Hair. Journal of Investigative Dermatology, 1996, 107, 20-25.	0.3	36
64	SHARPIN regulates mitochondria-dependent apoptosis in keratinocytes. Journal of Dermatological Science, 2011, 63, 148-153.	1.0	36
65	Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab Animal, 2017, 46, 146-151.	0.2	36
66	Comparison of chemical carcinogen skin tumor induction efficacy in inbred, mutant, and hybrid strains of mice: Morphologic variations of induced tumors and absence of a papillomavirus cocarcinogen. , 1997, 20, 19-32.		35
67	Mice Expressing a Mutant Krt75 (K6hf) Allele Develop Hair and Nail Defects Resembling Pachyonychia Congenita. Journal of Investigative Dermatology, 2008, 128, 270-279.	0.3	35
68	SHARPIN Is Essential for Cytokine Production, NF-l̂ºB Signaling, and Induction of Th1 Differentiation by Dendritic Cells. PLoS ONE, 2012, 7, e31809.	1.1	35
69	A Single-Nucleotide Polymorphism in the Abcc6 Gene Associates with Connective Tissue Mineralization in Mice Similar to Targeted Models for Pseudoxanthoma Elasticum. Journal of Investigative Dermatology, 2013, 133, 833-836.	0.3	35
70	A Mouse Model of Generalized Non-Herlitz Junctional Epidermolysis Bullosa. Journal of Investigative Dermatology, 2010, 130, 1819-1828.	0.3	33
71	Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice. DMM Disease Models and Mechanisms, 2012, 5, 19-25.	1.2	32
72	The mouse pathology ontology, MPATH; structure and applications. Journal of Biomedical Semantics, 2013, 4, 18.	0.9	32

5

#	Article	IF	CITATIONS
73	Interleukin-10-deficient Mice Are Less Susceptible to the Induction of Alopecia Areata. Journal of Investigative Dermatology, 2002, 119, 980-982.	0.3	29
74	Expression of chitinase-like proteins in the skin of chronic proliferative dermatitis (cpdm/cpdm) mice. Experimental Dermatology, 2006, 15, 808-814.	1.4	29
75	From Whence will they Come? — A Perspective on the Acute Shortage of Pathologists in Biomedical Research. Journal of Veterinary Diagnostic Investigation, 2007, 19, 455-456.	0.5	28
76	Distinguishing Mouse Strains by Proteomic Analysis of Pelage Hair. Journal of Investigative Dermatology, 2009, 129, 2120-2125.	0.3	28
77	Antiâ€IL5 decreases the number of eosinophils but not the severity of dermatitis in Sharpinâ€deficient mice. Experimental Dermatology, 2010, 19, 252-258.	1.4	28
78	Cutaneous Ultrastructural Features of the Flaky Skin (<i>fsn</i>) Mouse Mutation. Journal of Dermatology, 1995, 22, 385-395.	0.6	27
79	Spontaneous asj-2J Mutant Mouse as a Model for Generalized Arterial Calcification of Infancy: A Large Deletion/Insertion Mutation in the Enpp1 Gene. PLoS ONE, 2014, 9, e113542.	1.1	27
80	Hairless Mouse, HRS/J hr/hr. Monographs on Pathology of Laboratory Animals, 1989, , 192-197.	0.0	26
81	One Medicine, One Pathology, and the One Health concept. Journal of the American Veterinary Medical Association, 2009, 234, 1530-1531.	0.2	26
82	Disheveled Hair and Ear (Dhe), a Spontaneous Mouse Lmna Mutation Modeling Human Laminopathies. PLoS ONE, 2010, 5, e9959.	1.1	26
83	Profiling of epidermal lipids in a mouse model of dermatitis: Identification of potential biomarkers. PLoS ONE, 2018, 13, e0196595.	1.1	26
84	Alopecia Areata in Humans and Other Mammalian Species. Journal of Investigative Dermatology, 1995, 104, 32-33.	0.3	25
85	Alopecia Areata. , 2008, 10, 280-312.		25
86	Mutations in Sterol O-Acyltransferase 1 (Soat1) Result in Hair Interior Defects in AKR/J Mice. Journal of Investigative Dermatology, 2010, 130, 2666-2668.	0.3	25
87	Differentiating Inbred Mouse Strains from Each Other and Those with Single Gene Mutations Using Hair Proteomics. PLoS ONE, 2012, 7, e51956.	1.1	25
88	Living inside the box: environmental effects on mouse models of human disease. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	25
89	The Pathogenesis of Alopecia Areata in Rodent Models. Journal of Investigative Dermatology Symposium Proceedings, 2003, 8, 6-11.	0.8	24
90	Comparisons of mouse models for hair follicle reconstitution. Experimental Dermatology, 2011, 20, 1011-1015.	1.4	24

#	Article	IF	CITATIONS
91	Retinoid Metabolism Is Altered in Human and Mouse Cicatricial Alopecia. Journal of Investigative Dermatology, 2013, 133, 325-333.	0.3	23
92	Rhabdomyosarcomas in Aging A/J Mice. PLoS ONE, 2011, 6, e23498.	1.1	23
93	Recombinant human hepatitis B vaccine initiating alopecia areata: testing the hypothesis using the C3H/HeJ mouse model. Veterinary Dermatology, 2009, 20, 99-104.	0.4	22
94	Mouse genome-wide association and systems genetics identifies Lhfp as a regulator of bone mass. PLoS Genetics, 2019, 15, e1008123.	1.5	22
95	Pathbase: a new reference resource and database for laboratory mouse pathology. Radiation Protection Dosimetry, 2004, 112, 525-528.	0.4	21
96	A Novel Animal Model for Pseudoxanthoma Elasticum. American Journal of Pathology, 2012, 181, 1190-1196.	1.9	21
97	Evidence that initiated keratinocytes clonally expand into multiple existing hair follicles during papilloma histogenesis in SENCAR mouse skin. , 1997, 20, 151-158.		20
98	Murine Cytomegalovirus is Not Associated With Alopecia Areata in C3H/HeJ Mice. Journal of Investigative Dermatology, 1998, 110, 986-987.	0.3	20
99	Identification of Genes Important for Cutaneous Function Revealed by a Large Scale Reverse Genetic Screen in the Mouse. PLoS Genetics, 2014, 10, e1004705.	1.5	20
100	Mouse Tumor Biology Database (MTB): status update and future directions. Nucleic Acids Research, 2007, 35, D638-D642.	6.5	18
101	Mouse Models for Pseudoxanthoma Elasticum: Genetic and Dietary Modulation of the Ectopic Mineralization Phenotypes. PLoS ONE, 2014, 9, e89268.	1.1	18
102	PRIME importance of pathology expertise. Nature Biotechnology, 2009, 27, 24-25.	9.4	17
103	Pathology of the Laboratory Mouse. Toxicologic Pathology, 2011, 39, 559-562.	0.9	17
104	Cross-linked features of mouse pelage hair resistant to detergent extraction. The Anatomical Record, 1999, 254, 231-237.	2.3	16
105	Over 60% of NIH extramural funding involves animal-related research. Veterinary Pathology, 2007, 44, 962-963.	0.8	15
106	The Cinderella Effect: Searching for the Best Fit between Mouse Models and Human Diseases. Journal of Investigative Dermatology, 2013, 133, 2509-2513.	0.3	15
107	Animal Models for Alopecia Areata: What and Where?. Journal of Investigative Dermatology Symposium Proceedings, 2015, 17, 23-26.	0.8	15
108	A Review of Current Standards and the Evolution of Histopathology Nomenclature for Laboratory Animals. ILAR Journal, 2018, 59, 29-39.	1.8	15

#	Article	IF	CITATIONS
109	Quantitative Trait Locus and Integrative Genomics Revealed Candidate Modifier Genes for Ectopic Mineralization in Mouse Models of Pseudoxanthoma Elasticum. Journal of Investigative Dermatology, 2019, 139, 2447-2457.e7.	0.3	15
110	Systematic screening for skin, hair, and nail abnormalities in a large-scale knockout mouse program. PLoS ONE, 2017, 12, e0180682.	1.1	14
111	Sebaceous gland abnormalities in fatty acyl CoA reductase 2 (Far2) null mice result in primary cicatricial alopecia. PLoS ONE, 2018, 13, e0205775.	1.1	14
112	Loss of Function of the Mouse Sharpin Gene Results in Peyer's Patch Regression. PLoS ONE, 2013, 8, e55224.	1.1	14
113	Surgical methods for full-thickness skin grafts to induce alopecia areata in C3H/HeJ mice. Comparative Medicine, 2013, 63, 392-7.	0.4	14
114	Failure to induce alopecia areata in C3H/HeJ mice with exogenous interferon gamma. Journal of Experimental Animal Science, 2007, 43, 265-270.	0.5	13
115	Lack of Response to Laser Comb in Spontaneous and Graft-Induced Alopecia Areata in C3H/HeJ Mice. Journal of Investigative Dermatology, 2014, 134, 264-266.	0.3	13
116	Dsprul: A spontaneous mouse mutation in desmoplakin as a model of Carvajal-Huerta syndrome. Experimental and Molecular Pathology, 2015, 98, 164-172.	0.9	13
117	Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11, and 15 for age-related cardiac fibrosis. Mammalian Genome, 2016, 27, 179-190.	1.0	13
118	Gain of function p.E138A alteration in Card14 leads to psoriasiform skin inflammation and implicates genetic modifiers in disease severity. Experimental and Molecular Pathology, 2019, 110, 104286.	0.9	13
119	Quantitative evaluation of ontology design patterns for combining pathology and anatomy ontologies. Scientific Reports, 2019, 9, 4025.	1.6	13
120	Necropsy Methods. , 2004, , 495-516.		12
121	A Mouse by Any Other Name $\hat{a} \in $. Journal of Investigative Dermatology, 2009, 129, 1599-1601.	0.3	12
122	A direct method to determine the strength of the dermal-epidermal junction in a mouse model for epidermolysis bullosa. Experimental Dermatology, 2012, 21, 453-455.	1.4	12
123	The pathogenesis of chronic eosinophilic esophagitis in SHARPIN-deficient mice. Experimental and Molecular Pathology, 2015, 99, 460-467.	0.9	12
124	Corneocyte proteomics: Applications to skin biology and dermatology. Experimental Dermatology, 2018, 27, 931-938.	1.4	12
125	Skin and Adnexa. , 2018, , 511-542.		12
126	Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice. PLoS ONE, 2020, 15, e0235295.	1.1	12

#	Article	IF	CITATIONS
127	Necropsy Methods. , 2012, , 781-808.		10
128	Angiogenesis in the skin of SHARPIN-deficient mice with chronic proliferative dermatitis. Experimental and Molecular Pathology, 2016, 101, 303-307.	0.9	10
129	Cenetic determinants of fibro-osseous lesions in aged inbred mice. Experimental and Molecular Pathology, 2016, 100, 92-100.	0.9	10
130	Inherited Mouse Mutations: Models for the Study of Alopecia. Journal of Investigative Dermatology, 1991, 96, S95-S96.	0.3	9
131	Localization of Hair Shaft Protein VSIC8 in the Hair Follicle, Nail Unit, and Oral Cavity. Journal of Investigative Dermatology, 2011, 131, 1936-1938.	0.3	9
132	Lipidomic Profiling of the Epidermis in a Mouse Model of Dermatitis Reveals Sexual Dimorphism and Changes in Lipid Composition before the Onset of Clinical Disease. Metabolites, 2020, 10, 299.	1.3	9
133	Diversity of Spontaneous Neoplasms in Commonly Used Inbred Strains and Stocks of Laboratory Mice. , 2004, , 345-354.		8
134	Increased expression of chemokines in the skin of chronic proliferative dermatitis mutant mice. Experimental Dermatology, 2005, 14, 906-913.	1.4	8
135	Alopecia Areata: Updates from the Mouse Perspective. Journal of Investigative Dermatology Symposium Proceedings, 2013, 16, S23-S24.	0.8	8
136	Show and tell: disclosure and data sharing in experimental pathology. DMM Disease Models and Mechanisms, 2016, 9, 601-605.	1.2	8
137	Comparison of the acute ultraviolet photoresponse in congenic albino hairless C57 <scp>BL</scp> /6J mice relative to outbred <scp>SKH</scp> 1 hairless mice. Experimental Dermatology, 2016, 25, 688-693.	1.4	8
138	Differential Hairless Mouse Strain-Specific Susceptibility to Skin Cancer and Sunburn. Journal of Investigative Dermatology, 2019, 139, 1837-1840.e3.	0.3	8
139	Nail abnormalities identified in an ageing study of 30 inbred mouse strains. Experimental Dermatology, 2019, 28, 383-390.	1.4	8
140	Identifying mouse models for skin cancer using the Mouse Tumor Biology Database. Experimental Dermatology, 2014, 23, 761-763.	1.4	7
141	An inquiry into the causes and effects of the variolae (or Cowâ€pox. 1798). Experimental Dermatology, 2016, 25, 178-180.	1.4	7
142	Developing a comprehensive mouse pathology program. Comparative Medicine, 2004, 54, 617-21.	0.4	7
143	Diversity of Spontaneous Neoplasms in Commonly Used Inbred Strains of Laboratory Mice. , 2012, , 411-426.		6
144	R164C mutation in FOXQ1 H3 domain affects formation of the hair medulla. Experimental Dermatology, 2013, 22, 234-236.	1.4	6

#	Article	IF	CITATIONS
145	Mouse Alopecia Areata and Heart Disease: Know Your Mouse!. Journal of Investigative Dermatology, 2014, 134, 279-281.	0.3	6
146	Common Diseases Found in Inbred Strains of Laboratory Mice. Research Methods for Mutant Mice Series, 2005, , 223-231.	0.1	5
147	Early gene expression differences in inbred mouse strains with susceptibility to pulmonary adenomas. Experimental and Molecular Pathology, 2012, 93, 455-461.	0.9	5
148	Crisp1 and alopecia areata in C3H/HeJ mice. Experimental and Molecular Pathology, 2014, 97, 525-528.	0.9	5
149	Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database. Experimental and Molecular Pathology, 2015, 99, 533-536.	0.9	5
150	Dermal lymphatic dilation in a mouse model of alopecia areata. Experimental and Molecular Pathology, 2016, 100, 332-336.	0.9	5
151	Training Mouse Pathologists: Ten Years of Workshops on the Pathology of Mouse Models of Human Disease. Toxicologic Pathology, 2012, 40, 823-825.	0.9	4
152	Skin Diseases in Laboratory Mice: Approaches to Drug Target Identification and Efficacy Screening. Methods in Molecular Biology, 2010, 602, 193-213.	0.4	4
153	Association between hair-induced oronasal inflammation and ulcerative dermatitis in C57BL/6 mice. Comparative Medicine, 2011, 61, 204-5; author reply 205.	0.4	4
154	Loss of FAS/FASL signalling does not reduce apoptosis in <i>Sharpin</i> null mice. Experimental Dermatology, 2017, 26, 820-822.	1.4	3
155	Training mouse pathologists: 15 years of workshops on the pathology of mouse models of human disease. Lab Animal, 2017, 46, 204-206.	0.2	3
156	2â€deoxy Dâ€glucose treatment does not elicit a hair growth response in alopecia areata. Experimental Dermatology, 2019, 28, 1091-1093.	1.4	3
157	Hyaline Arteriolosclerosis in 30 Strains of Aged Inbred Mice. Veterinary Pathology, 2019, 56, 799-806.	0.8	3
158	Hair follicle dystrophy in a litter of domestic cats resembling lanceolate hair mutant mice. Veterinary Dermatology, 2021, 32, 74.	0.4	3
159	Excavating the Genome: Large-Scale Mutagenesis Screening for the Discovery of New Mouse Models. Journal of Investigative Dermatology Symposium Proceedings, 2015, 17, 27-29.	0.8	2
160	Skin Diseases in Laboratory Mice: Approaches to Drug Target Identification and Efficacy Screening. Methods in Molecular Biology, 2016, 1438, 199-224.	0.4	2
161	Maternal IL â€6 can cause Tâ€cellâ€mediated juvenile alopecia by nonâ€scarring follicular dystrophy in mice. Experimental Dermatology, 2016, 25, 223-228.	1.4	2
162	Training mouse pathologists: 16th annual workshop on the pathology of mouse models of human disease. Lab Animal, 2018, 47, 38-40.	0.2	2

#	Article	IF	CITATIONS
163	PATHBIO: an international training program for precision mouse phenotyping. Mammalian Genome, 2020, 31, 49-53.	1.0	2
164	Estrogen regulates the expression of retinoic acid synthesis enzymes and binding proteins in mouse skin. Nutrition Research, 2021, 94, 10-24.	1.3	2
165	Experimental maternal hyperpipecolatemia decreases DNA in the mouse brain. International Journal of Developmental Neuroscience, 1986, 4, 113-118.	0.7	1
166	Skin fragility in the wild-derived, inbred mouse strain Mus pahari/EiJ. Experimental and Molecular Pathology, 2017, 102, 128-132.	0.9	0
167	Systematic Evaluation of Skin and Adnexa in Mutant Laboratory Mice. Current Protocols in Mouse Biology, 2014, 4, 105-119.	1.2	0
168	Independent DSG4 frameshift variants in cats with hair shaft dystrophy. Molecular Genetics and Genomics, 2022, 297, 147-154.	1.0	0
169	Title is missing!. , 2020, 16, e1008884.		0
170	Title is missing!. , 2020, 16, e1008884.		0
171	Title is missing!. , 2020, 16, e1008884.		0
172	Title is missing!. , 2020, 16, e1008884.		0