
Gilles Ramstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3124501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting the physical mechanisms of East Asian summer monsoon precipitation changes during the mid-Holocene: a data–model comparison. Climate Dynamics, 2023, 60, 1009-1022.	1.7	3
2	Tibetan Plateau Made Central Asian Drylands Move Northward, Concentrate in Narrow Latitudinal Bands, and Increase in Intensity During the Cenozoic. Geophysical Research Letters, 2022, 49, .	1.5	2
3	Climate-inferred distribution estimates of mid-to-late Pliocene hominins. Global and Planetary Change, 2022, 210, 103756.	1.6	4
4	A coherent biogeographical framework for Old World Neogene and Pleistocene mammals. Palaeontology, 2022, 65, .	1.0	0
5	Freshwater influx to the Eastern Mediterranean Sea from the melting of the Fennoscandian ice sheet during the last deglaciation. Scientific Reports, 2022, 12, 8466.	1.6	3
6	The contrasting effects of thermodynamic and dynamic processes on East Asian summer monsoon precipitation during the Last Glacial Maximum: a data-model comparison. Climate Dynamics, 2021, 56, 1303-1316.	1.7	12
7	Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2. Climate of the Past, 2021, 17, 529-543.	1.3	20
8	Deglacial Ice Sheet Instabilities Induced by Proglacial Lakes. Geophysical Research Letters, 2021, 48, e2020GL092141.	1.5	9
9	Impact of an accelerated melting of Greenland on malaria distribution over Africa. Nature Communications, 2021, 12, 3971.	5.8	14
10	Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 1777-1794.	1.3	10
11	From the Climates of the Past to the Climates of the Future. Frontiers in Earth Sciences, 2021, , 443-478.	0.1	1
12	Biogeochemical Cycles and Aerosols Over the Last Million Years. Frontiers in Earth Sciences, 2021, , 271-300.	0.1	0
13	The Precambrian Climate. Frontiers in Earth Sciences, 2021, , 343-358.	0.1	0
14	Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 2427-2450.	1.3	10
15	Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble. Climate of the Past, 2021, 17, 2537-2558.	1.3	21
16	Polar amplification of Pliocene climate by elevated trace gas radiative forcing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23401-23407.	3.3	15
17	Modeling a modern-like <i>p</i> CO ₂ warm period (Marine Isotope Stage KM5c) with two versions of an Institut Pierre Simon Laplace atmosphere–ocean coupled general circulation model. Climate of the Past, 2020, 16, 1-16.	1.3	27
18	Impacts of extremely asymmetrical polar ice sheets on the East Asian summer monsoon during the MIS-13 interglacial. Quaternary Science Reviews, 2020, 230, 106164.	1.4	23

#	Article	IF	CITATIONS
19	The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Climate of the Past, 2020, 16, 2095-2123.	1.3	93
20	Evaluation of Arctic warming in mid-Pliocene climate simulations. Climate of the Past, 2020, 16, 2325-2341.	1.3	21
21	Development of a sequential tool, LMDZ-NEMO-med-V1, to conduct global-to-regional past climate simulation for the Mediterranean basin: an Early Holocene case study. Geoscientific Model Development, 2020, 13, 2337-2354.	1.3	2
22	Mid-Holocene climate change over China: model–data discrepancy. Climate of the Past, 2019, 15, 1223-1249.	1.3	21
23	Simulating the Occurrence of the Last Sapropel Event (S1): Mediterranean Basin Ocean Dynamics Simulations Using Nd Isotopic Composition Modeling. Paleoceanography and Paleoclimatology, 2019, 34, 237-251.	1.3	19
24	Some Illustrations of Large Tectonically Driven Climate Changes in Earth History. Tectonics, 2019, 38, 4454-4464.	1.3	7
25	Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: A modeling study. Earth and Planetary Science Letters, 2018, 484, 295-308.	1.8	62
26	Comparison of spatial downscaling methods of general circulation model results to study climate variability during the Last Glacial Maximum. Geoscientific Model Development, 2018, 11, 2563-2579.	1.3	26
27	Dynamic Greenland ice sheet driven by pCO2 variations across the Pliocene Pleistocene transition. Nature Communications, 2018, 9, 4755.	5.8	19
28	Quantifying East Asian Summer Monsoon Dynamics in the ECP4.5 Scenario With Reference to the Midâ€Piacenzian Warm Period. Geophysical Research Letters, 2018, 45, 12,523.	1.5	14
29	High-resolution simulation of Asian monsoon response to regional uplift of the Tibetan Plateau with regional climate model nested with global climate model. Clobal and Planetary Change, 2018, 169, 34-47.	1.6	14
30	Difference between the North Atlantic and Pacific meridional overturning circulation in response to the uplift of the Tibetan Plateau. Climate of the Past, 2018, 14, 751-762.	1.3	21
31	Middle Miocene climate and vegetation models and their validation with proxy data. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 467, 95-119.	1.0	52
32	Risky business: The impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum. Quaternary Science Reviews, 2017, 164, 217-229.	1.4	47
33	Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate. Earth and Planetary Science Letters, 2017, 472, 266-276.	1.8	37
34	Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 2017, 3, e1600983.	4.7	424
35	Consequences of rapid ice sheet melting on the Sahelian population vulnerability. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6533-6538.	3.3	47
36	Une brève histoire du climat de la Terre. , 2017, , 6-14.	0.1	1

#	Article	IF	CITATIONS
37	Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Climate Dynamics, 2016, 46, 1437-1457.	1.7	23
38	Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. , 2016, 46, 1437.		1
39	Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period. Climate of the Past, 2015, 11, 403-424.	1.3	35
40	Modelling Greenland ice sheet inception and sustainability during the Late Pliocene. Earth and Planetary Science Letters, 2015, 424, 295-305.	1.8	21
41	Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation. Nature Geoscience, 2015, 8, 704-707.	5.4	59
42	The concept of global monsoon applied to the last glacial maximum: A multi-model analysis. Quaternary Science Reviews, 2015, 126, 126-139.	1.4	32
43	Evaluating the dominant components of warming in Pliocene climate simulations. Climate of the Past, 2014, 10, 79-90.	1.3	58
44	European glacial dust deposits: Geochemical constraints on atmospheric dust cycle modeling. Geophysical Research Letters, 2014, 41, 7666-7674.	1.5	38
45	Exploring the impact of climate variability during the Last Glacial Maximum on the pattern of human occupation of Iberia. Journal of Human Evolution, 2014, 73, 35-46.	1.3	51
46	Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature, 2014, 513, 401-404.	13.7	224
47	Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord. Nature Climate Change, 2013, 3, 969-974.	8.1	132
48	Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. Scientific Reports, 2013, 3, 2013.	1.6	124
49	Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS 3 loess deposits. Climate of the Past, 2013, 9, 1385-1402.	1.3	46
50	A comparative study of large-scale atmospheric circulation in the context of a future scenario (RCP4.5) and past warmth (mid-Pliocene). Climate of the Past, 2013, 9, 1613-1627.	1.3	30
51	Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Climate of the Past, 2013, 9, 2085-2099.	1.3	60
52	Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Climate of the Past, 2013, 9, 191-209.	1.3	289
53	Response of methane emissions from wetlands to the Last Glacial Maximum and an idealized Dansgaard–Oeschger climate event: insights from two models of different complexity. Climate of the Past, 2013, 9, 149-171.	1.3	16
54	The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma). Climate of the Past, 2013, 9, 2687-2702.	1.3	107

#	Article	IF	CITATIONS
55	Mid-pliocene Atlantic Meridional Overturning Circulation not unlike modern. Climate of the Past, 2013, 9, 1495-1504.	1.3	50
56	Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene. Climate of the Past, 2013, 9, 1417-1430.	1.3	29
57	Modelling the mid-Pliocene Warm Period climate with the IPSL coupled model and its atmospheric component LMDZ5A. Geoscientific Model Development, 2012, 5, 903-917.	1.3	60
58	Growth of subtropical forests in Miocene Europe: The roles of carbon dioxide and Antarctic ice volume. Geology, 2012, 40, 567-570.	2.0	20
59	A reassessment of lake and wetland feedbacks on the North African Holocene climate. Geophysical Research Letters, 2012, 39, .	1.5	60
60	A sensitivity study to global desertification in cold and warm climates: results from the IPSL OAGCM model. Climate Dynamics, 2012, 38, 1629-1647.	1.7	10
61	Millennial-scale oscillations in the Southern Ocean in response to atmospheric CO2 increase. Global and Planetary Change, 2011, 76, 128-136.	1.6	17
62	The climate change caused by the land plant invasion in the Devonian. Earth and Planetary Science Letters, 2011, 310, 203-212.	1.8	92
63	Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes. Climate of the Past, 2011, 7, 1297-1306.	1.3	95
64	Climates of the Earth and Cryosphere Evolution. Surveys in Geophysics, 2011, 32, 329-350.	2.1	8
65	On the triggering mechanism of Heinrich events. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1359-60.	3.3	30
66	Climates of the Earth and Cryosphere Evolution. Space Sciences Series of ISSI, 2011, , 329-350.	0.0	0
67	Toward the snowball earth deglaciation…. Climate Dynamics, 2010, 35, 285-297.	1.7	42
68	Links between ocean temperature and iceberg discharge during Heinrich events. Nature Geoscience, 2010, 3, 122-126.	5.4	101
69	Relative contributions of climate change, stomatal closure, and leaf area index changes to 20th and 21st century runoff change: A modelling approach using the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. Journal of Geophysical Research, 2010, 115, .	3.3	42
70	High resolution climate and vegetation simulations of the Late Pliocene, a model-data comparison over western Europe and the Mediterranean region. Climate of the Past, 2009, 5, 585-606.	1.3	22
71	Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation. Climate Dynamics, 2009, 32, 593-614.	1.7	123
72	Modelling the impact of tectonics, surface conditions and sea surface temperatures on Saharan and sub-Saharan climate evolution. Comptes Rendus - Geoscience, 2009, 341, 612-620.	0.4	14

#	Article	IF	CITATIONS
73	The snowball Earth aftermath: Exploring the limits of continental weathering processes. Earth and Planetary Science Letters, 2009, 277, 453-463.	1.8	105
74	Imprint of North-Atlantic abrupt climate changes on western European loess deposits as viewed in a dust emission model. Quaternary Science Reviews, 2009, 28, 2851-2866.	1.4	61
75	An Energetics Study of Wintertime Northern Hemisphere Storm Tracks under 4 × CO2 Conditions in Two Ocean–Atmosphere Coupled Models. Journal of Climate, 2009, 22, 819-839.	1.2	20
76	Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle. Climate of the Past, 2009, 5, 329-345.	1.3	79
77	Impact of a realistic river routing in coupled ocean–atmosphere simulations of the Last Glacial Maximum climate. Climate Dynamics, 2008, 30, 855-869.	1.7	29
78	Human ecological niches and ranges during the LGM in Europe derived from an application of eco-cultural niche modeling. Journal of Archaeological Science, 2008, 35, 481-491.	1.2	119
79	Evolution of Lake Chad Basin hydrology during the mid-Holocene: A preliminary approach from lake to climate modelling. Global and Planetary Change, 2008, 61, 41-48.	1.6	17
80	Amount of CO ₂ emissions irreversibly leading to the total melting of Greenland. Geophysical Research Letters, 2008, 35, .	1.5	51
81	Scenario for the evolution of atmospheric pCO2 during a snowball Earth. Geology, 2008, 36, 47.	2.0	82
82	A geochemical modelling study of the evolution of the chemical composition of seawater linked to a "snowball" glaciation. Biogeosciences, 2008, 5, 253-267.	1.3	30
83	Fish tooth δ180 revising Late Cretaceous meridional upper ocean water temperature gradients. Geology, 2007, 35, 107.	2.0	88
84	38. Mechanisms leading to the last glacial inception over North America: Results from the CLIMBER-GREMLINS atmosphere-ocean-vegetation northern hemisphere ice-sheet model. Developments in Quaternary Sciences, 2007, , 573-582.	0.1	1
85	Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate of the Past, 2007, 3, 279-296.	1.3	349
86	Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247, 357-381.	1.0	84
87	Long-term hydrodynamic response induced by past climatic and geomorphologic forcing: The case of the Paris basin, France. Physics and Chemistry of the Earth, 2007, 32, 368-378.	1.2	25
88	H4 abrupt event and late Neanderthal presence in Iberia. Earth and Planetary Science Letters, 2007, 258, 283-292.	1.8	115
89	Coupled modeling of global carbon cycle and climate in the Neoproterozoic: links between Rodinia breakup and major glaciations. Comptes Rendus - Geoscience, 2007, 339, 212-222.	0.4	35
90	Investigating plausible mechanisms to trigger a deglaciation from a hard snowball Earth. Comptes Rendus - Geoscience, 2007, 339, 274-287.	0.4	33

#	Article	IF	CITATIONS
91	How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model-data comparison. Climate of the Past, 2007, 3, 331-339.	1.3	79
92	Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features. Climate of the Past, 2007, 3, 261-277.	1.3	1,089
93	Tectonic Uplift and Eastern Africa Aridification. Science, 2006, 313, 1419-1423.	6.0	422
94	Evolution of the Antarctic ice sheet throughout the last deglaciation: A study with a new coupled climate—north and south hemisphere ice sheet model. Earth and Planetary Science Letters, 2006, 248, 750-758.	1.8	60
95	Freshwater discharges in a simulation of the Last Glacial Maximum climate using improved river routing. Geophysical Research Letters, 2006, 33, .	1.5	11
96	High-resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions?. Climate Dynamics, 2005, 24, 577-590.	1.7	142
97	Investigating the mechanisms leading to the deglaciation of past continental northern hemisphere ice sheets with the CLIMBER–GREMLINS coupled model. Global and Planetary Change, 2005, 48, 253-273.	1.6	31
98	Impact of the hydrological cycle on past climate changes: three illustrations at different time scales. Comptes Rendus - Geoscience, 2005, 337, 125-137.	0.4	8
99	The Last Glacial Maximum and Heinrich Event 1 in terms of climate and vegetation around the Alboran Sea: a preliminary model-data comparison. Comptes Rendus - Geoscience, 2005, 337, 983-992.	0.4	54
100	Numerical evidence for thermohaline circulation reversals during the Maastrichtian. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	1.0	4
101	A â€~snowball Earth' climate triggered by continental break-up through changes in runoff. Nature, 2004, 428, 303-306.	13.7	292
102	The impact of atmospheric and oceanic heat transports on the sea-ice-albedo instability during the Neoproterozoic. Climate Dynamics, 2004, 22, 293-306.	1.7	44
103	Les glaciations du Prot�rozoï;½que. Comptes Rendus - Geoscience, 2004, , .	0.4	Ο
104	Sensitivity of Northern Hemispheric continental ice sheets to tropical SST during deglaciation. Geophysical Research Letters, 2004, 31, .	1.5	12
105	Quantifying ice-sheet feedbacks during the last glacial inception. Geophysical Research Letters, 2004, 31, .	1.5	64
106	Les glaciations du ProtérozoıÌ^que. Comptes Rendus - Geoscience, 2004, 336, 639-646.	0.4	12
107	Sensitivity of the northern extratropics hydrological cycle to the changing insolation forcing at 126 and 115ÂkyÂBP. Climate Dynamics, 2003, 21, 273-287.	1.7	18
108	Modelling the climate evolution from the last interglacial to the start of the last glaciation: The role of Arctic Ocean freshwater budget. Geophysical Research Letters, 2003, 30, .	1.5	22

#	Article	IF	CITATIONS
109	Is there a conflict between the Neoproterozoic glacial deposits and the snowball Earth interpretation: an improved understanding with numerical modeling. Earth and Planetary Science Letters, 2003, 208, 101-112.	1.8	98
110	The Sturtian â€~snowball' glaciation: fire and ice. Earth and Planetary Science Letters, 2003, 211, 1-12.	1.8	160
111	Is high obliquity a plausible cause for Neoproterozoic glaciations?. Geophysical Research Letters, 2002, 29, 42-1-42-4.	1.5	42
112	Simulations of Northern Hemisphere ice-sheet retreat:. Quaternary Science Reviews, 2002, 21, 243-265.	1.4	77
113	The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 167, 39-71.	1.0	123
114	The Last Glacial Maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Climate Dynamics, 2001, 17, 23-43.	1.7	123
115	Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature, 2001, 410, 570-574.	13.7	180
116	Mid-Holocene and Last Glacial Maximum African monsoon changes as simulated within the Paleoclimate Modelling Intercomparison Project. Global and Planetary Change, 2000, 26, 51-66.	1.6	129
117	Northern Hemisphere Storm Tracks in Present Day and Last Glacial Maximum Climate Simulations: A Comparison of the European PMIP Models*. Journal of Climate, 1999, 12, 742-760.	1.2	138
118	Weather regimes in past climate atmospheric general circulation model simulations. Climate Dynamics, 1999, 15, 773-793.	1.7	45
119	Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Climate Dynamics, 1999, 15, 823-856.	1.7	300
120	Tropical paleoclimates at the Last Glacial Maximum: comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. Climate Dynamics, 1999, 15, 857-874.	1.7	234
121	Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times. Chemical Geology, 1999, 159, 163-189.	1.4	57
122	Sensitivity of the European LGM climate to North Atlantic sea-surface temperature. Geophysical Research Letters, 1999, 26, 1893-1896.	1.5	24
123	Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. Journal of Geophysical Research, 1999, 104, 11995-12018.	3.3	156
124	Cloud processes associated with past and future climate changes. Climate Dynamics, 1998, 14, 233-247.	1.7	35
125	Impact of parameterizations on simulated winter mid-Holocene and Last Glacial Maximum climatic changes in the northern hemisphere. Journal of Geophysical Research, 1998, 103, 8935-8946.	3.3	20
126	Coupling an AGCM with an ISM to investigate the ice sheets mass balance at the Last Glacial Maximum. Geophysical Research Letters, 1998, 25, 531-534.	1.5	17

#	Article	IF	CITATIONS
127	Existence of an ice cap during the mid-Cretaceous period (120–90 Ma): an AGCM investigation. Annals of Glaciology, 1997, 25, 198-202.	2.8	4
128	Modelling of Last Glacial Maximum ice sheets using different accumulation parameterizations. Annals of Glaciology, 1997, 24, 223-228.	2.8	14
129	Ice-sheet mass balance during the last glacial maximum. Annals of Glaciology, 1997, 25, 145-152.	2.8	4
130	Existence of an ice cap during the mid-cretaceous period (120–90 Ma): an AGCM investigation. Annals of Glaciology, 1997, 25, 198-202.	2.8	7
131	Ice-sheet mass balance during the last glacial maximum. Annals of Glaciology, 1997, 25, 145-152.	2.8	8
132	Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature, 1997, 386, 788-795.	13.7	560
133	Modelling of Last Glacial Maximum ice sheets using different accumulation parameterizations. Annals of Glaciology, 1997, 24, 223-228.	2.8	5
134	Sensitivity experiments to sea surface temperatures, sea-ice extent and ice-sheet reconstruction, for the Last Glacial Maximum. Annals of Glaciology, 1995, 21, 343-347.	2.8	3
135	Sensitivity experiments to sea surface temperatures, sea-ice extent and ice-sheet reconstruction, for the Last Clacial Maximum. Annals of Glaciology, 1995, 21, 343-347.	2.8	25
136	Climates of the Earth. , 0, , 183-202.		2
137	Global Tectonic Setting and Climate of the Late Neoproterozoic: A Climate-Geochemical Coupled Study. Geophysical Monograph Series, 0, , 79-89.	0.1	5