
Hans Linderholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3124485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of global climate models in simulating extreme precipitation in China. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 65, 19799.	1.7	69
2	Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1794236.	1.6	11
3	The Origin of Treeâ€Ring Reconstructed Summer Cooling in Northern Europe During the 18th Century Eruption of Laki. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	8
4	The negative impact of increasing temperatures on rice yields in southern China. Science of the Total Environment, 2022, 820, 153262.	8.0	38
5	The potential to use variations in tree-ring geometric center to estimate past wind speed change. Natural Hazards Research, 2022, 2, 132-137.	3.8	2
6	Spatial and Temporal Variations in the Potential Yields of Highland Barley in Relation to Climate Change in Three Rivers Region of the Tibetan Plateau from 1961 to 2020. Sustainability, 2022, 14, 7719.	3.2	0
7	Optimal Strategy on Radiation Estimation for Calculating Universal Thermal Climate Index in Tourism Cities of China. International Journal of Environmental Research and Public Health, 2022, 19, 8111.	2.6	3
8	The contributions of climate change and production area expansion to drought risk for maize in China over the last four decades. International Journal of Climatology, 2021, 41, E2851.	3.5	12
9	Dynamics and fate of blue carbon in a mangrove–seagrass seascape: influence of landscape configuration and land-use change. Landscape Ecology, 2021, 36, 1489-1509.	4.2	21
10	The origin of driftwood on eastern and south-western Svalbard. Polar Science, 2021, 29, 100658.	1.2	5
11	The spatiotemporal distribution of historical malaria cases in Sweden: a climatic perspective. Malaria Journal, 2021, 20, 212.	2.3	7
12	A Norway spruce tree-ring width chronology for the Common Era from the Central Scandinavian Mountains. Dendrochronologia, 2021, 70, 125896.	2.2	4
13	Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 2020, 10, 20-29.	18.8	424
14	Climatic Causes of Maize Production Loss under Global Warming in Northeast China. Sustainability, 2020, 12, 7829.	3.2	9
15	Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia, 2020, 64, 125757.	2.2	66
16	Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science, 2020, 370, 1095-1099.	12.6	141
17	<i>Pinus cembra</i> L. tree-ring data as a proxy for summer mass-balance variability of the Careser Glacier (Italian Rhaetian Alps). Journal of Glaciology, 2020, 66, 714-726.	2.2	4
18	Introduction to the special issue on â€~Tree rings, Environment and Tropical Forests'. Geografiska Annaler, Series A: Physical Geography, 2020, 102, 183-184.	1.5	0

#	Article	IF	CITATIONS
19	The Potential of Using Tree-Ring Chronology from the Southern Coast of Korea to Reconstruct the Climate of Subtropical Western North Pacific: A Pilot Study. Atmosphere, 2020, 11, 1082.	2.3	0
20	Ensemble standardization constraints on the influence of the tree growth trends in dendroclimatology. Climate Dynamics, 2020, 54, 3387-3404.	3.8	9
21	Impacts of Drought on Maize and Soybean Production in Northeast China During the Past Five Decades. International Journal of Environmental Research and Public Health, 2020, 17, 2459.	2.6	74
22	The influence of excess precipitation on winter wheat under climate change in China from 1961 to 2017. Science of the Total Environment, 2019, 690, 189-196.	8.0	40
23	Does the IOD Independently Influence Seasonal Monsoon Patterns in Northern Ethiopia?. Atmosphere, 2019, 10, 432.	2.3	12
24	Were medieval warm-season temperatures in Jäntland, central Scandinavian Mountains, lower than previously estimated?. Dendrochronologia, 2019, 57, 125607.	2.2	9
25	Agricultural Adaptation to Global Warming in the Tibetan Plateau. International Journal of Environmental Research and Public Health, 2019, 16, 3686.	2.6	15
26	Juniper Tree-Ring Data from the Kuramin Range (Northern Tajikistan) Reveals Changing Summer Drought Signals in Western Central Asia. Forests, 2019, 10, 505.	2.1	14
27	Oceanic and atmospheric modes in the Pacific and Atlantic Oceans since the Little Ice Age (LIA): Towards a synthesis. Quaternary Science Reviews, 2019, 215, 293-307.	3.0	21
28	Anthropogenic Aerosols Cause Recent Pronounced Weakening of Asian Summer Monsoon Relative to Last Four Centuries. Geophysical Research Letters, 2019, 46, 5469-5479.	4.0	65
29	Two Centuries-Long Streamflow Reconstruction Inferred from Tree Rings for the Middle Reaches of the Weihe River in Central China. Forests, 2019, 10, 208.	2.1	11
30	Introduction to the special issue "Climate of the past 2000 years: regional and trans-regional syntheses― Climate of the Past, 2019, 15, 611-615.	3.4	10
31	The Potential of Using Tree-Ring Data from Jeju Island to Reconstruct Climate in Subtropical Korea and the Western North Pacific. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 293-301.	2.3	4
32	Assessing the dendroclimatic potential of Nothofagus betuloides (Magellan's beech) forests in the southernmost Chilean Patagonia. Trees - Structure and Function, 2019, 33, 557-575.	1.9	6
33	A Pinus cembra L. tree-ring record for late spring to late summer temperature in the Rhaetian Alps, Italy. Dendrochronologia, 2019, 53, 22-31.	2.2	23
34	Evaluation of Tree Growth Relevant Atmospheric Circulation Patterns for Geopotential Height Field Reconstructions for Asia. Journal of Climate, 2018, 31, 4391-4401.	3.2	5
35	Are standing dead trees (snags) suitable as climate proxies? A case study from the central Scandinavian Mountains. Scandinavian Journal of Forest Research, 2018, 33, 114-124.	1.4	1
36	Blue Carbon Storage in Tropical Seagrass Meadows Relates to Carbonate Stock Dynamics, Plant–Sediment Processes, and Landscape Context: Insights from the Western Indian Ocean. Ecosystems, 2018, 21, 551-566.	3.4	118

3

#	Article	IF	CITATIONS
37	A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. Holocene, 2018, 28, 254-266.	1.7	45
38	Increased current flow enhances the risk of organic carbon loss from <i>Zostera marina</i> sediments: Insights from a flume experiment. Limnology and Oceanography, 2018, 63, 2793-2805.	3.1	28
39	Technical note: Open-paleo-data implementation pilot – the PAGES 2k special issue. Climate of the Past, 2018, 14, 593-600.	3.4	5
40	Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Communications, 2018, 9, 3605.	12.8	98
41	Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges. Climate of the Past, 2018, 14, 473-514.	3.4	54
42	Climate variability in the subarctic area for the last 2 millennia. Climate of the Past, 2018, 14, 101-116.	3.4	17
43	Growth–climate relationship of European beech at its northern distribution limit. European Journal of Forest Research, 2018, 137, 619-629.	2.5	17
44	Increasing intrinsic water-use efficiency over the past 160 years does not stimulate tree growth in southeastern China. Climate Research, 2018, 76, 115-130.	1.1	14
45	Facilitating tree-ring dating of historic conifer timbers using Blue Intensity. Journal of Archaeological Science, 2017, 78, 99-111.	2.4	43
46	Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quaternary Science Reviews, 2017, 163, 1-22.	3.0	165
47	Reconstructing 800Âyears of summer temperatures in Scotland from tree rings. Climate Dynamics, 2017, 49, 2951-2974.	3.8	53
48	Drought variation of western Chinese Loess Plateau since 1568 and its linkages with droughts in western North America. Climate Dynamics, 2017, 49, 3839-3850.	3.8	26
49	Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nature Communications, 2017, 8, 15386.	12.8	126
50	Can tree-ring density data reflect summer temperature extremes and associated circulation patterns over Fennoscandia?. Climate Dynamics, 2017, 49, 2721-2736.	3.8	6
51	A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 2017, 4, 170088.	5.3	268
52	Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia. Climate Dynamics, 2017, 49, 1917-1931.	3.8	7
53	An Improved Ãngström-Type Model for Estimating Solar Radiation over the Tibetan Plateau. Energies, 2017, 10, 892.	3.1	11
54	Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate of the Past, 2017, 13, 1851-1900.	3.4	93

#	Article	IF	CITATIONS
55	Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales. Past Global Change Magazine, 2017, 25, 57-60.	0.1	14
56	1200†years of warm-season temperature variability in central Scandinavia inferred from tree-ring density. Climate of the Past, 2016, 12, 1297-1312.	3.4	30
57	Climate Change Increases Drought Stress of Juniper Trees in the Mountains of Central Asia. PLoS ONE, 2016, 11, e0153888.	2.5	32
58	Periodicities in mid- to late-Holocene peatland hydrology identified from Swedish and Lithuanian tree-ring data. Quaternary Science Reviews, 2016, 137, 200-208.	3.0	8
59	Influence of dust deposition and climate on the radial growth of Tsuga canadensis near its northern range limit. European Journal of Forest Research, 2016, 135, 69-76.	2.5	6
60	Annual precipitation variation for the southern edge of the Gobi Desert (China) inferred from tree rings: linkages to climatic warming of twentieth century. Natural Hazards, 2016, 81, 939-955.	3.4	6
61	Dendroclimatological potential of three juniper species from the Turkestan range, northwestern Pamir-Alay Mountains, Uzbekistan. Trees - Structure and Function, 2016, 30, 733-748.	1.9	20
62	Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 2016, 134, 1-18.	3.0	314
63	How similar are annual and summer temperature variability in central Sweden?. Advances in Climate Change Research, 2015, 6, 159-170.	5.1	1
64	Diverse construction types and local timber sources characterize early medieval church roofs in southwestern Sweden. Dendrochronologia, 2015, 35, 39-50.	2.2	9
65	A 700-year record of large fire years in northern Scandinavia shows large variability and increased frequency during the 1800 s. Journal of Quaternary Science, 2015, 30, 211-221.	2.1	32
66	The influence of elevational differences in absolute maximum density values on regional climate reconstructions. Trees - Structure and Function, 2015, 29, 1259-1271.	1.9	12
67	The Potential of Deriving Tree-Ring-Based Field Reconstructions of Droughts and Pluvials over Fennoscandia*,+. Journal of Climate, 2015, 28, 3453-3471.	3.2	19
68	The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. Science of the Total Environment, 2015, 512-513, 1-7.	8.0	99
69	Drought variability in eastern Mongolian Plateau and its linkages to the large-scale climate forcing. Climate Dynamics, 2015, 44, 717-733.	3.8	67
70	Changes in winter cold surges over Southeast China: 1961 to 2012. Asia-Pacific Journal of Atmospheric Sciences, 2015, 51, 29-37.	2.3	19
71	Changes in the relationship between solar radiation and sunshine duration in large cities of China. Energy, 2015, 82, 589-600.	8.8	32
72	Fennoscandia revisited: a spatially improved tree-ring reconstruction of summer temperatures for the last 900Âyears. Climate Dynamics, 2015, 45, 933-947.	3.8	57

#	Article	IF	CITATIONS
73	Tree ring density-based warm-season temperature reconstruction since A.D. 1610 in the eastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426, 112-120.	2.3	29
74	Nutrient resorption efficiency and proficiency in economic wood trees irrigated by treated wastewater in desert planted forests. Agricultural Water Management, 2015, 155, 67-75.	5.6	12
75	Using adjusted Blue Intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia. Holocene, 2015, 25, 547-556.	1.7	54
76	Old World megadroughts and pluvials during the Common Era. Science Advances, 2015, 1, e1500561.	10.3	403
77	A tree-ring field reconstruction of Fennoscandian summer hydroclimate variability for the last millennium. Climate Dynamics, 2015, 44, 3141-3154.	3.8	29
78	The relative contribution of climate and cultivar renewal to shaping rice yields in China since 1981. Theoretical and Applied Climatology, 2015, 120, 1-9.	2.8	27
79	Growth dynamics of tree-line and lake-shore Scots pine (Pinus sylvestris L.) in the central Scandinavian Mountains during the Medieval Climate Anomaly and the early Little Ice Age. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	22
80	Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Climate of the Past, 2014, 10, 877-885.	3.4	90
81	Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction. Environmental Research Letters, 2014, 9, 094007.	5.2	27
82	Spatial variability and temporal trends in waterâ€use efficiency of European forests. Global Change Biology, 2014, 20, 3700-3712.	9.5	175
83	Multiâ€century reconstruction of fire activity in <scp>N</scp> orthern <scp>E</scp> uropean boreal forest suggests differences in regional fire regimes and their sensitivity to climate. Journal of Ecology, 2014, 102, 738-748.	4.0	43
84	Forecasting fish stock dynamics under climate change: <scp>B</scp> altic herring (<i>Clupea) Tj ETQq0 0 0 rgBT</i>	/Overlock	10 Tf 50 302
85	Influences of large- and regional-scale climate on fish recruitment in the Skagerrak–Kattegat over the last century. Journal of Marine Systems, 2014, 134, 1-11.	2.1	3
86	Tree-ring stable carbon isotope-based May–July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th century warming. Quaternary Science Reviews, 2014, 93, 67-76.	3.0	45
87	Advances towards improved low-frequency tree-ring reconstructions, using an updated Pinus sylvestris L. MXD network from the Scandinavian Mountains. Theoretical and Applied Climatology, 2013, 113, 697-710.	2.8	35
88	Exploring teleconnections between the summer NAO (SNAO) and climate in East Asia over the last four centuries $\hat{a} \in \hat{A}$ tree-ring perspective. Dendrochronologia, 2013, 31, 297-310.	2.2	26
89	Effects of treated wastewater irrigation on size-structure, biochemical products and mineral content of native medicinal shrubs. Ecological Engineering, 2013, 60, 235-241.	3.6	16
90	Radial growth of Norway spruce and Scots pine: effects of nitrogen deposition experiments. European Journal of Forest Research, 2013, 132, 83-92.	2.5	12

#	Article	IF	CITATIONS
91	Tree-ring derived temperature records in the central Loess Plateau, China. Quaternary International, 2013, 283, 30-35.	1.5	13
92	Reconstructed drought variability in southeastern Sweden since the 1650s. International Journal of Climatology, 2013, 33, 2449-2458.	3.5	33
93	Impacts of Snow Initialization on Subseasonal Forecasts of Surface Air Temperature for the Cold Season. Journal of Climate, 2013, 26, 1956-1972.	3.2	67
94	Reconstructions of surface ocean conditions from the northeast Atlantic and Nordic seas during the last millennium. Holocene, 2013, 23, 921-935.	1.7	49
95	A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe. Holocene, 2013, 23, 471-484.	1.7	100
96	Individual and pooled tree-ring stable-carbon isotope series in Chinese pine from the Nan Wutai region, China: Common signal and climate relationships. Chemical Geology, 2012, 330-331, 17-26.	3.3	40
97	Historical spatiotemporal dynamics of eastern North Sea cod. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 833-841.	1.4	24
98	April–September mean maximum temperature inferred from Hailar pine (Pinus sylvestris var.) Tj ETQq0 0 0 rgBT Palaeoclimatology, Palaeoecology, 2012, 313-314, 162-172.	/Overlock 2.3	10 Tf 50 46 42
99	Forest fire activity in Sweden: Climatic controls and geographical patterns in 20th century. Agricultural and Forest Meteorology, 2012, 154-155, 174-186.	4.8	41
100	South Swedish bog pines as indicators of Mid-Holocene climate variability. Dendrochronologia, 2012, 30, 93-103.	2.2	40
101	Greening in the circumpolar high-latitude may amplify warming in the growing season. Climate Dynamics, 2012, 38, 1421-1431.	3.8	31
102	Spatial and temporal depletion of haddock and pollack during the last century in the Kattegat-Skagerrak. Journal of Applied Ichthyology, 2012, 28, 200-208.	0.7	19
103	Observation and calculation of the solar radiation on the Tibetan Plateau. Energy Conversion and Management, 2012, 57, 23-32.	9.2	64
104	Ecological impacts of desert plantation forests on biodiversity. African Journal of Ecology, 2012, 50, 308-318.	0.9	5
105	Legacies of pre-industrial land use can bias modern tree-ring climate calibrations. Climate Research, 2012, 53, 63-76.	1.1	14
106	Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon. Journal of Geophysical Research, 2011, 116, .	3.3	104
107	Recent recovery of the Siberian High intensity. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	100
108	The influence of climate on 13C/12C and 18O/16O ratios in tree ring cellulose of Pinus sylvestris L. growing in the central Scandinavian Mountains. Chemical Geology, 2011, 286, 84-84.	3.3	35

#	Article	IF	CITATIONS
109	Urban NO2 and NO pollution in relation to the North Atlantic Oscillation NAO. Atmospheric Environment, 2011, 45, 883-888.	4.1	18
110	Improving a tree-ring reconstruction from west-central Scandinavia: 900Âyears of warm-season temperatures. Climate Dynamics, 2011, 36, 97-108.	3.8	79
111	Tree-ring-based annual precipitation reconstruction in Kalaqin, Inner Mongolia for the last 238 years. Science Bulletin, 2011, 56, 2995-3002.	1.7	41
112	Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Science Bulletin, 2011, 56, 2986.	1.7	58
113	Impact of urban warming on earlier spring flowering in Korea. International Journal of Climatology, 2011, 31, 1488-1497.	3.5	24
114	Rain-season trends in precipitation and their effect in different climate regions of China during 1961–2008. Environmental Research Letters, 2011, 6, 034025.	5.2	67
115	Trends of the thermal growing season in China, 1951–2007. International Journal of Climatology, 2010, 30, 33-43.	3.5	43
116	Dendroclimatology in Fennoscandia – from past accomplishments to future potential. Climate of the Past, 2010, 6, 93-114.	3.4	63
117	Exploring for senescence signals in native scots pine (Pinus sylvestris L.) in the Scottish Highlands. Forest Ecology and Management, 2010, 260, 321-330.	3.2	12
118	Comparing Scots pine tree-ring proxies and detrending methods among sites in Jäntland, west-central Scandinavia. Dendrochronologia, 2010, 28, 239-249.	2.2	15
119	A multicentury perspective on the summer North Atlantic Oscillation (SNAO) and drought in the eastern Atlantic Region. Journal of Quaternary Science, 2009, 24, 415-425.	2.1	38
120	Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Science in China Series D: Earth Sciences, 2009, 52, 348-359.	0.9	227
121	Temperature variations recorded in <i>Pinus tabulaeformis</i> tree rings from the southern and northern slopes of the central Qinling Mountains, central China. Boreas, 2009, 38, 285-291.	2.4	103
122	The Summer North Atlantic Oscillation: Past, Present, and Future. Journal of Climate, 2009, 22, 1082-1103.	3.2	578
123	Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Climatic Change, 2008, 87, 405-419.	3.6	103
124	On the spatiotemporal characteristics of Fennoscandian tree-ring based summer temperature reconstructions. Theoretical and Applied Climatology, 2008, 91, 1-25.	2.8	46
125	Proxy data reconstructions of the Storglaciäen (Sweden) mass-balance record back to AD 1500 on annual to decadal timescales. Annals of Glaciology, 2007, 46, 261-267.	1.4	12
126	Assessing the possibility to couple the chemical signal in winter snow on Storglaciäen, Sweden, to atmospheric climatology. Annals of Glaciology, 2007, 46, 335-341.	1.4	11

#	Article	IF	CITATIONS
127	A high-resolution reconstruction of Storglaciäen mass balance back to 1780/81 using tree-ring data and circulation indices. Quaternary Research, 2007, 67, 12-20.	1.7	18
128	Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. Journal of Geophysical Research, 2006, 111, .	3.3	347
129	Growing season changes in the last century. Agricultural and Forest Meteorology, 2006, 137, 1-14.	4.8	486
130	Comparison of high-resolution climate proxies from the Tibetan Plateau and Scandinavia during the last millennium. Quaternary International, 2006, 154-155, 141-148.	1.5	19
131	A comparison of growing season indices for the Greater Baltic Area. International Journal of Biometeorology, 2006, 51, 107-118.	3.0	74
132	Assessment of combined glacier and tree-ring studies to constrain latitudinal climate forcing of Scandinavian glacier mass balances. Annals of Glaciology, 2005, 42, 303-310.	1.4	7
133	Summer temperature variability in central scandinavia during the last 3600 years. Geografiska Annaler, Series A: Physical Geography, 2005, 87, 231-241.	1.5	60
134	Central Scandinavian winter precipitation variability during the past five centuries reconstructed from Pinus sylvestris tree rings. Boreas, 2005, 34, 43-52.	2.4	28
135	Central Scandinavian winter precipitation variability during the past five centuries reconstructed from Pinus sylvestris tree rings. Boreas, 2005, 34, 43-52.	2.4	6
136	Early nineteenth century drought in east central Sweden inferred from dendrochronological and historical archives. Climate Research, 2005, 29, 63-72.	1.1	24
137	Summer moisture variability in east central sweden since the midâ€eighteenth century recorded in tree rings. Geografiska Annaler, Series A: Physical Geography, 2004, 86, 277-287.	1.5	13
138	An assessment of twentieth century tree-cover changes on a southern Swedish peatland combining dendrochronoloy and aerial photograph analysis. Wetlands, 2004, 24, 357-363.	1.5	46
139	Tree-ring records from central Fennoscandia: the relationship between tree growth and climate along a west–east transect. Holocene, 2003, 13, 887-895.	1.7	55
140	Low-frequency summer temperature variation in central Sweden since the tenth century inferred from tree rings. Holocene, 2002, 12, 667-671.	1.7	60
141	Peatland pines as climate indicators? A regional comparison of the climatic influence on Scots pine growth in Sweden. Canadian Journal of Forest Research, 2002, 32, 1400-1410.	1.7	54
142	Twentieth-century Scots Pine Growth Variations in the Central Scandinavian Mountains Related to Climate Change. Arctic, Antarctic, and Alpine Research, 2002, 34, 440-449.	1.1	23
143	Twentieth-Century Scots Pine Growth Variations in the Central Scandinavian Mountains Related to Climate Change. Arctic, Antarctic, and Alpine Research, 2002, 34, 440.	1.1	20
144	Climatic influence on Scots pine growth on dry and wet soils in the central Scandinavian mountains, interpreted from tree-ring width. Silva Fennica, 2001, 35, .	1.3	62

#	Article	IF	CITATIONS
145	Swedish tree rings provide new evidence in support of a major, widespread environmental disruption in 1628 BC. Geophysical Research Letters, 2000, 27, 2957-2960.	4.0	31
146	Climatic and anthropogenic influences on radial growth of scots pine at hanvedsmossen, a raised peat bog, in south central sweden. Geografiska Annaler, Series A: Physical Geography, 1999, 81, 75-86.	1.5	13
147	Summer temperature changes in Tierra del Fuego since AD 1765: atmospheric drivers and tree-ring reconstruction from the southernmost forests of the world. Climate Dynamics, 0, , .	3.8	Ο