Jianshu Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/3124412/jianshu-li-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

167
papers6,070
citations38
h-index72
g-index179
ext. papers7,170
ext. citations7.9
avg, IF6.06
L-index

#	Paper	IF	Citations
167	Tough adhesives for diverse wet surfaces. <i>Science</i> , 2017 , 357, 378-381	33.3	676
166	Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. <i>Advanced Drug Delivery Reviews</i> , 2008 , 60, 1000-17	18.5	672
165	Star polymers: Advances in biomedical applications. <i>Progress in Polymer Science</i> , 2015 , 46, 55-85	29.6	264
164	Cationic Supramolecules Composed of Multiple Oligoethylenimine-Grafted ECyclodextrins Threaded on a Polymer Chain for Efficient Gene Delivery. <i>Advanced Materials</i> , 2006 , 18, 2969-2974	24	182
163	Star-shaped cationic polymers by atom transfer radical polymerization from beta-cyclodextrin cores for nonviral gene delivery. <i>Biomacromolecules</i> , 2009 , 10, 285-93	6.9	177
162	Effective protection and controlled release of insulin by cationic beta-cyclodextrin polymers from alginate/chitosan nanoparticles. <i>International Journal of Pharmaceutics</i> , 2010 , 393, 212-8	6.5	162
161	Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel. <i>Biomaterials</i> , 2013 , 34, 5036-47	15.6	123
160	Drug carrier systems based on water-soluble cationic beta-cyclodextrin polymers. <i>International Journal of Pharmaceutics</i> , 2004 , 278, 329-42	6.5	119
159	The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. <i>Biomaterials</i> , 2012 , 33, 2734-45	15.6	118
158	CoreBhell Tecto(dendrimers): I. Synthesis and Characterization of Saturated Shell Models. <i>Advanced Materials</i> , 2000 , 12, 796-800	24	115
157	Controlled insulin release from glucose-sensitive self-assembled multilayer films based on 21-arm star polymer. <i>Biomaterials</i> , 2011 , 32, 1759-66	15.6	111
156	Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2-(dimethylamino)ethyl methacrylate]. <i>International Journal of Pharmaceutics</i> , 2011 , 416, 104-9	6.5	104
155	Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer. <i>Biomaterials</i> , 2013 , 34, 6738-47	15.6	97
154	Quaternary ammonium beta-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood-brain barrier. <i>Biomacromolecules</i> , 2009 , 10, 505-16	6.9	90
153	Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating. <i>Advanced Materials</i> , 2014 , 26, 3009-13	24	84
152	Thermoresponsive hydrogels from phosphorylated ABA triblock copolymers: a potential scaffold for bone tissue engineering. <i>Biomacromolecules</i> , 2013 , 14, 2206-14	6.9	73
151	Synthesis of water-soluble cationic polymers with star-like structure based on cyclodextrin core via ATRP. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 6345-6354	2.5	68

(2014-2016)

150	Intelligent Drug Delivery System Based on Mesoporous Silica Nanoparticles Coated with an Ultra-pH-Sensitive Gatekeeper and Poly(ethylene glycol). <i>ACS Macro Letters</i> , 2016 , 5, 55-58	6.6	66
149	Super long-term glycemic control in diabetic rats by glucose-sensitive LbL films constructed of supramolecular insulin assembly. <i>Biomaterials</i> , 2012 , 33, 8733-42	15.6	64
148	Advances in polymeric materials for dental applications. <i>Polymer Chemistry</i> , 2017 , 8, 807-823	4.9	62
147	Antibacterial and Biocompatible Cross-Linked Waterborne Polyurethanes Containing Gemini Quaternary Ammonium Salts. <i>Biomacromolecules</i> , 2018 , 19, 279-287	6.9	60
146	Tumor-targeted aggregation of pH-sensitive nanocarriers for enhanced retention and rapid intracellular drug release. <i>Polymer Chemistry</i> , 2014 , 5, 5668	4.9	60
145	21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery. <i>Carbohydrate Polymers</i> , 2010 , 79, 277-283	10.3	58
144	Study of branched cationic beta-cyclodextrin polymer/indomethacin complex and its release profile from alginate hydrogel. <i>International Journal of Pharmaceutics</i> , 2010 , 386, 221-8	6.5	57
143	Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template in vitro. <i>Archives of Oral Biology</i> , 2013 , 58, 975-80	2.8	56
142	Recent developments and applications of bioinspired dendritic polymers. <i>Polymer Chemistry</i> , 2015 , 6, 668-680	4.9	55
141	Controlled drug release system based on cyclodextrin-conjugated poly(lactic acid)-b-poly(ethylene glycol) micelles. <i>International Journal of Pharmaceutics</i> , 2013 , 443, 110-9	6.5	54
140	Choline phosphate functionalized surface: protein-resistant but cell-adhesive zwitterionic surface potential for tissue engineering. <i>Chemical Communications</i> , 2015 , 51, 487-90	5.8	51
139	Advances in pH-Sensitive Polymers for Smart Insulin Delivery. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1700413	4.8	50
138	Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. <i>Acta Biomaterialia</i> , 2014 , 10, 4437-46	10.8	48
137	Calcitonin-Loaded Thermosensitive Hydrogel for Long-Term Antiosteopenia Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 23428-23440	9.5	48
136	Macroscopic Supramolecular Assembly to Fabricate 3D Ordered Structures: Towards Potential Tissue Scaffolds with Targeted Modification. <i>Advanced Functional Materials</i> , 2015 , 25, 6851-6857	15.6	41
135	Triclosan-loaded poly(amido amine) dendrimer for simultaneous treatment and remineralization of human dentine. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 115, 237-43	6	39
134	Doxorubicin loaded pH-responsive micelles capable of rapid intracellular drug release for potential tumor therapy. <i>Journal of Biomedical Nanotechnology</i> , 2014 , 10, 1480-9	4	39
133	Tumor-acidity activated surface charge-conversion of polymeric nanocarriers for enhanced cell adhesion and targeted drug release. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 1679-84	4.8	39

132	An efficient synthetic-route to prepare [2,3,6-tri-O-(2-bromo-2-methylpropionyl]-Ecyclodextrin). <i>Tetrahedron Letters</i> , 2005 , 46, 2227-2229	2	39
131	A Highly Stretchable, Real-Time Self-Healable Hydrogel Adhesive Matrix for Tissue Patches and Flexible Electronics. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901423	10.1	38
130	Remineralization of Demineralized Dentin Induced by Amine-Terminated PAMAM Dendrimer. <i>Macromolecular Materials and Engineering</i> , 2015 , 300, 107-117	3.9	38
129	Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications. <i>Biomaterials Science</i> , 2016 , 4, 1682-1690	7.4	36
128	Synthesis and antibacterial characterization of gemini surfactant monomers and copolymers. <i>Polymer Chemistry</i> , 2012 , 3, 907	4.9	35
127	Effect of Molecular Weight and Arm Number on the Growth and pH-Dependent Morphology of Star Poly[2-(dimethylamino)ethyl methacrylate]/Poly(styrenesulfonate) Multilayer Films. <i>Macromolecules</i> , 2010 , 43, 9087-9093	5.5	35
126	Effective dentin restorative material based on phosphate-terminated dendrimer as artificial protein. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 128, 304-314	6	34
125	Synthesis and antibacterial characterization of waterborne polyurethanes with gemini quaternary ammonium salt. <i>Science Bulletin</i> , 2015 , 60, 1114-1121	10.6	34
124	The influence of arrangement sequence on the glucose-responsive controlled release profiles of insulin-incorporated LbL films. <i>Acta Biomaterialia</i> , 2012 , 8, 4380-8	10.8	34
123	Identification of in vivo pellicle constituents by analysis of serum immune responses. <i>Journal of Dental Research</i> , 2004 , 83, 60-4	8.1	33
122	Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery. <i>Acta Biomaterialia</i> , 2016 , 41, 282-92	10.8	32
121	Antibacterial and anti-biofouling coating on hydroxyapatite surface based on peptide-modified tannic acid. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 160, 136-143	6	31
120	pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. <i>Biomaterials Science</i> , 2019 , 7, 1643-1651	7.4	30
119	Gemini quaternary ammonium salt waterborne biodegradable polyurethanes with antibacterial and biocompatible properties. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 361-368	7.8	30
118	A novel insulin oral delivery system assisted by cationic Etyclodextrin polymers. <i>Journal of Applied Polymer Science</i> , 2010 , 115, 1371-1379	2.9	30
117	Zwitterionic PMCP-Modified Polycaprolactone Surface for Tissue Engineering: Antifouling, Cell Adhesion Promotion, and Osteogenic Differentiation Properties. <i>Small</i> , 2019 , 15, e1903784	11	29
116	Phosphorylated dendronized poly(amido amine)s as protein analogues for directing hydroxylapatite biomineralization. <i>Chemical Communications</i> , 2014 , 50, 6491-3	5.8	29
115	Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations. <i>Nature Communications</i> , 2019 , 10, 3214	17.4	27

(2015-2014)

114	Effective dentinal tubule occlusion induced by polyhydroxy-terminated PAMAM dendrimer in vitro. <i>RSC Advances</i> , 2014 , 4, 43496-43503	3.7	26
113	8DSS-promoted remineralization of demineralized dentin in vitro. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 6763-6772	7.3	26
112	Characterization of the immunologic responses to human in vivo acquired enamel pellicle as a novel means to investigate its composition. <i>Oral Microbiology and Immunology</i> , 2003 , 18, 183-91		26
111	Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: synergistic role of cationic and zwitterionic chains to resist staphyloccocus aureus. <i>Biomaterials Science</i> , 2019 , 7, 5369-5382	7.4	26
110	From molecules to macrostructures: recent development of bioinspired hard tissue repair. <i>Biomaterials Science</i> , 2017 , 5, 1435-1449	7.4	25
109	A thermo-sensitive injectable hydroxypropyl chitin hydrogel for sustained salmon calcitonin release with enhanced osteogenesis and hypocalcemic effects. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 270-28	3 ^{7·3}	25
108	Bioinspired by cell membranes: functional polymeric materials for biomedical applications. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 750-774	7.8	25
107	Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials. <i>Scientific Reports</i> , 2015 , 5, 11105	4.9	24
106	Bio-inspired peptide decorated dendrimers for a robust antibacterial coating on hydroxyapatite. <i>Polymer Chemistry</i> , 2017 , 8, 4264-4279	4.9	24
105	A Universal and Ultrastable Mineralization Coating Bioinspired from Biofilms. <i>Advanced Functional Materials</i> , 2018 , 28, 1802730	15.6	24
104	Nanocarriers with dual pH-sensitivity for enhanced tumor cell uptake and rapid intracellular drug release. <i>RSC Advances</i> , 2014 , 4, 30780	3.7	23
103	Hierarchical mesoporous silica nanoparticles for tailorable drug release. <i>International Journal of Pharmaceutics</i> , 2016 , 511, 65-72	6.5	23
102	Supramolecular nanoparticles of calcitonin and dipeptide for long-term controlled release. <i>Journal of Controlled Release</i> , 2017 , 256, 182-192	11.7	22
101	Bioinspired from Salivary Acquired Pellicle: A Multifunctional Coating for Biominerals. <i>Chemistry of Materials</i> , 2017 , 29, 5663-5670	9.6	22
100	Multifunctional hydrogels based on Exyclodextrin with both biomineralization and anti-inflammatory properties. <i>Carbohydrate Polymers</i> , 2014 , 102, 869-76	10.3	22
99	Staged self-assembly of PAMAM dendrimers into macroscopic aggregates with a microribbon structure similar to that of amelogenin. <i>Soft Matter</i> , 2013 , 9, 7553	3.6	22
98	One-step phosphorylated poly(amide-amine) dendrimer loaded with apigenin for simultaneous remineralization and antibacterial of dentine. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 172, 760-768	6	22
97	Biomimetic mineralization of collagen fibrils induced by amine-terminated PAMAM dendrimersPAMAM dendrimers for remineralization. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2015 , 26, 963-74	3.5	21

96	Natural protein bioinspired materials for regeneration of hard tissues. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 2199-2215	7.3	21
95	Bioinspired heptapeptides as functionalized mineralization inducers with enhanced hydroxyapatite affinity. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 1984-1994	7.3	21
94	Dual pH-responsive micelles with both charge-conversional property and hydrophobicflydrophilic transition for effective cellular uptake and intracellular drug release. <i>Polymer Chemistry</i> , 2016 , 7, 2202-	-2 2 08	21
93	Inspired by nonenveloped viruses escaping from endo-lysosomes: a pH-sensitive polyurethane micelle for effective intracellular trafficking. <i>Nanoscale</i> , 2016 , 8, 7711-22	7.7	20
92	Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity. <i>International Journal of Pharmaceutics</i> , 2019 , 562, 23-30	6.5	19
91	A zwitterionic surface with general cell-adhesive and protein-resistant properties. <i>RSC Advances</i> , 2015 , 5, 76216-76220	3.7	19
90	A natural polymer based bioadhesive with self-healing behavior and improved antibacterial properties. <i>Biomaterials Science</i> , 2020 , 8, 4346-4357	7.4	19
89	Effective syntheses of per-2,3-di- and per-3-O-chloroacetyl-Etyclodextrins: A new kind of ATRP initiators for star polymers. <i>Tetrahedron Letters</i> , 2010 , 51, 2351-2353	2	19
88	Inhibition of the fibrillation of highly amyloidogenic human calcitonin by cucurbit[7]uril with improved bioactivity. <i>Acta Biomaterialia</i> , 2018 , 78, 178-188	10.8	18
87	Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption. <i>Langmuir</i> , 2017 , 33, 8295-8301	4	18
86	The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. <i>RSC Advances</i> , 2017 , 7, 54947-54955	3.7	18
85	Thermoresponsive hydrogels based on a phosphorylated star-shaped copolymer: mimicking the extracellular matrix for in situ bone repair. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 428-434	7.3	17
84	A stimuli-responsive insulin delivery system based on reversible phenylboronate modified cyclodextrin with glucose triggered host-guest interaction. <i>International Journal of Pharmaceutics</i> , 2018 , 548, 649-658	6.5	17
83	Novel flocculation system based on 21-arm cationic star polymer. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2006 , 289, 172-178	5.1	17
82	Bioinspired Peptide-Decorated Tannic Acid for in Situ Remineralization of Tooth Enamel: In Vitro and in Vivo Evaluation. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 3553-3562	5.5	16
81	Multifunctional Biomaterial Coating Based on Bio-Inspired Polyphosphate and Lysozyme Supramolecular Nanofilm. <i>Biomacromolecules</i> , 2018 , 19, 1979-1989	6.9	16
80	Effect and Stability of Poly(Amido Amine)-Induced Biomineralization on Dentinal Tubule Occlusion. <i>Materials</i> , 2017 , 10,	3.5	16
79	Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 156, 87-94	6	15

Recent advances in functional nanostructured materials for bone-related diseases. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 509-527	7.3	15
Physiological pH-triggered morphological transition of amphiphilic block copolymer self-assembly. <i>Journal of Polymer Research</i> , 2014 , 21, 1	2.7	15
A self-defensive bilayer hydrogel coating with bacteria triggered switching from cell adhesion to antibacterial adhesion. <i>Polymer Chemistry</i> , 2017 , 8, 5344-5353	4.9	15
Controlled co-delivery nanocarriers based on mixed micelles formed from cyclodextrin-conjugated and cross-linked copolymers. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 123, 486-92	6	15
Promotion of the osteogenic activity of an antibacterial polyaniline coating by electrical stimulation. <i>Biomaterials Science</i> , 2019 , 7, 4730-4737	7.4	14
Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis. <i>Journal of Controlled Release</i> , 2019 , 304, 39-50	11.7	14
8DSS peptide induced effective dentinal tubule occlusion in vitro. <i>Dental Materials</i> , 2018 , 34, 629-640	5.7	14
Albumin-Modified Cationic Nanocarriers To Potentially Create a New Platform for Drug Delivery Systems. <i>ACS Applied Materials & Delivery</i> 11, 16421-16429	9.5	13
Advances in biomolecule inspired polymeric material decorated interfaces for biological applications. <i>Biomaterials Science</i> , 2019 , 7, 3984-3999	7.4	13
Effects of interaction between a polycation and a nonionic polymer on their cross-assembly into mixed micelles. <i>Soft Matter</i> , 2015 , 11, 4197-207	3.6	13
Synthesis and surface properties of polyurethane end-capped with hybrid hydrocarbon/fluorocarbon double-chain phospholipid. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 1362-72	5.4	13
Effective in situ repair and bacteriostatic material of tooth enamel based on salivary acquired pellicle inspired oligomeric procyanidins. <i>Polymer Chemistry</i> , 2016 , 7, 6761-6769	4.9	13
Glucose-Responsive Micelles for Controlled Insulin Release Based on Transformation from Amphiphilic to Double Hydrophilic. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 5457-63	1.3	13
The synergistic effect of hierarchical structure and alkyl chain length on the antifouling and bactericidal properties of cationic/zwitterionic block polymer brushes. <i>Biomaterials Science</i> , 2020 , 8, 6890-6902	7.4	12
Fabrication of Double-Network Hydrogels with Universal Adhesion and Superior Extensibility and Cytocompatibility by One-Pot Method. <i>Biomacromolecules</i> , 2020 , 21, 4699-4708	6.9	12
Exenatide in obese or overweight patients without diabetes: A systematic review and meta-analyses of randomized controlled trials. <i>International Journal of Cardiology</i> , 2016 , 219, 293-300	3.2	12
Gellan gum/alginate-based Ca-enriched acellular bilayer hydrogel with robust interface bonding for effective osteochondral repair. <i>Carbohydrate Polymers</i> , 2021 , 270, 118382	10.3	12
Salivary acquired pellicle-inspired DpSpSEEKC peptide for the restoration of demineralized tooth enamel. <i>Biomedical Materials (Bristol)</i> , 2017 , 12, 025007	3.5	11
	Materials Chemistry B, 2019, 7, 509-527 Physiological pH-triggered morphological transition of amphiphilic block copolymer self-assembly. Journal of Polymer Research, 2014, 21, 1 A self-defensive bilayer hydrogel coating with bacteria triggered switching from cell adhesion to antibacterial adhesion. Polymer Chemistry, 2017, 8, 5344-5353 Controlled co-delivery nanocarriers based on mixed micelles formed from cyclodextrin-conjugated and cross-linked copolymers. Colloids and Surfaces B: Biolinterfaces, 2014, 123, 486-92 Promotion of the osteogenic activity of an antibacterial polyaniline coating by electrical stimulation. Biomaterials Science, 2019, 7, 4730-4737 Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis. Journal of Controlled Release, 2019, 304, 39-50 8DSS peptide induced effective dentinal tubule occlusion in vitro. Dental Materials, 2018, 34, 629-640 Albumin-Modified Cationic Nanocarriers To Potentially Create a New Platform for Drug Delivery Systems. ACS Applied Materials & Bamp; Interfaces, 2019, 11, 16421-16429 Advances in biomolecule inspired polymeric material decorated interfaces for biological applications. Biomaterials Science, 2019, 7, 3984-3999 Effects of interaction between a polycation and a nonionic polymer on their cross-assembly into mixed micelles. Soft Matter, 2015, 11, 4197-207 Synthesis and surface properties of polyurethane end-capped with hybrid hydrocarbon/fluorocarbon double-chain phospholipid. Journal of Biomedical Materials Research-Part A, 2013, 101, 1362-72 Effective in situ repair and bacteriostatic material of tooth enamel based on salivary acquired pellicle inspired oligomeric procyanidins. Polymer Chemistry, 2016, 7, 6761-6769 Glucose-Responsive Micelles for Controlled Insulin Release Based on Transformation from Amphiphilic to Double Hydrophilic. Journal of Nanoscience and Nanotechnology, 2016, 16, 5457-63 The synergistic effect of hierarchical structure and alkyl chain length on the antifouling and bactericidal properties of cationic/zwit	Physiological pH-triggered morphological transition of amphiphilic block copolymer self-assembly. Journal of Polymer Research, 2014, 21, 1 A self-defensive bilayer hydrogel coating with bacteria triggered switching from cell adhesion to antibacterial adhesion. Polymer Chemistry, 2017, 8, 5344-5353 Controlled co-delivery nanocarriers based on mixed micelles formed from cyclodextrin-conjugated and cross-linked copolymers. Colloids and Surfaces B: Biointerfaces, 2014, 123, 486-92 Promotion of the osteogenic activity of an antibacterial polyaniline coating by electrical scinulation. Biomaterials Science, 2019, 7, 4730-4737 Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis. Journal of Controlled Release, 2019, 304, 39-50 8DSS peptide induced effective dentinal tubule occlusion in vitro. Dental Materials, 2018, 34, 629-640 57 Albumin-Modified Cationic Nanocarriers To Potentially Create a New Platform for Drug Delivery Systems. ACS Applied Materials Samp, Interfaces, 2019, 11, 16421-16429 Advances in biomolecule inspired polymeric material decorated interfaces for biological applications. Biomaterials Science, 2019, 7, 3984-3999 74 Effects of Interaction between a polycation and a nonionic polymer on their cross-assembly into mixed micelles. Soft Matter, 2015, 11, 4197-207 Synthesis and surface properties of polyurethane end-capped with hybrid hydrocarbon/fluorocarbon double-chain phospholipid. Journal of Biomedical Materials Research-Part A, 2013, 101, 1362-72 Effective in situ repair and bacteriostatic material of tooth enamel based on salivary acquired pellicle inspired oligomeric procyanidins. Polymer Chemistry, 2016, 7, 6761-6769 Clucose-Responsive Micelles for Controlled Insulin Release Based on Transformation from Amphiphilic to Double Hydrophilic. Journal of Manoscience and Manotechnology, 2016, 16, 5457-63 The synergistic effect of hierarchical structure and alkyl chain length on the antifouling and bactericdal properties of cationic/zwitterionic block polymer brushes. Bioma

60	Crosslinking Induced Reassembly of Multiblock Polymers: Addressing the Dilemma of Stability and Responsivity. <i>Advanced Science</i> , 2020 , 7, 1902701	13.6	11
59	Zwitterionic choline phosphate functionalized chitosan with antibacterial property and superior water solubility. <i>European Polymer Journal</i> , 2020 , 134, 109821	5.2	11
58	Bioinspired enamel-like oriented minerals on general surfaces: towards improved mechanical properties. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 5237-5244	7.3	10
57	Glucose-responsive micelles for insulin release. <i>Journal of Controlled Release</i> , 2015 , 213, e122-3	11.7	10
56	Sulfonated glycosaminoglycan bioinspired carbon dots for effective cellular labelling and promotion of the differentiation of mesenchymal stem cells. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 5655-5666	7.3	10
55	Understanding the effect of alkyl chains of gemini cations on the physicochemical and cellular properties of polyurethane micelles. <i>Biomaterials Science</i> , 2018 , 6, 1899-1907	7.4	10
54	Detecting the Formation and Transformation of Oligomers during Insulin Fibrillation by a Dendrimer Conjugated with Aggregation-Induced Emission Molecule. <i>Bioconjugate Chemistry</i> , 2017 , 28, 944-956	6.3	9
53	pH-Responsive Antibacterial Resin Adhesives for Secondary Caries Inhibition. <i>Journal of Dental Research</i> , 2020 , 99, 1368-1376	8.1	9
52	Pentapeptide-decorated silica nanoparticles loading salmon calcitonin for in vivo osteoporosis treatment with sustained hypocalcemic effect. <i>Materials Today Chemistry</i> , 2019 , 14, 100189	6.2	9
51	A Comparison of Functional Features in Chinese and US Mobile Apps for Diabetes Self-Management: A Systematic Search in App Stores and Content Analysis. <i>JMIR MHealth and UHealth</i> , 2019 , 7, e13971	5.5	9
50	Programmed antibacterial and mineralization therapy for dental caries based on zinc-substituted hydroxyapatite/ alendronate-grafted polyacrylic acid hybrid material. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 194, 111206	6	8
49	Cadmium sulfide nanoparticles with controllable morphology, photoluminescence and photocatalytic activity templated by worm-like dendronized poly(amido amine)s. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 450, 25-35	5.1	8
48	Modulated insulin release from glucose-sensitive multilayer films. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e152-4	11.7	8
47	Advances in biomineralization-inspired materials for hard tissue repair. <i>International Journal of Oral Science</i> , 2021 , 13, 42	27.9	8
46	Recent Advances in Injectable Dual Crosslinking Hydrogels for Biomedical Applications. <i>Macromolecular Bioscience</i> , 2021 , 21, e2100109	5.5	8
45	Universal and biocompatible hydroxyapatite coating induced by phytic acid-metal complex multilayer. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 169, 478-485	6	8
44	Simultaneous Improvement of Oxidative and Hydrolytic Resistance of Polycarbonate Urethanes Based on Polydimethylsiloxane/Poly(hexamethylene carbonate) Mixed Macrodiols. <i>Biomacromolecules</i> , 2018 , 19, 2137-2145	6.9	7
43	Poly[2-(methacryloyloxy)ethyl choline phosphate] functionalized polylactic acid film with improved degradation resistance both in vitro and in vivo. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 185, 11063	so ⁶	7

(2019-2021)

42	Biomineral interface with superior cell adhesive and antibacterial properties based on enzyme-triggered digestion of saliva acquired pellicle-inspired polypeptide coatings. <i>Chemical Engineering Journal</i> , 2021 , 415, 128955	14.7	7
41	Polyvinyl alcohol/chitosan composite hydrogels with sustained release of traditional Tibetan medicine for promoting chronic diabetic wound healing. <i>Biomaterials Science</i> , 2021 , 9, 3821-3829	7.4	7
40	A removable photothermal antibacterial Warm pastellarget for cariogenic bacteria. <i>Chemical Engineering Journal</i> , 2022 , 429, 132491	14.7	7
39	Self-reduction and morphology control of gold nanoparticles by dendronized poly(amido amine)s for photothermal therapy. <i>RSC Advances</i> , 2014 , 4, 44872-44878	3.7	6
38	Biomineralization and osteogenic differentiation modulated by substrate stiffness. <i>European Polymer Journal</i> , 2020 , 122, 109395	5.2	6
37	Two-in-one strategy: a remineralizing and anti-adhesive coating against demineralized enamel. <i>International Journal of Oral Science</i> , 2020 , 12, 27	27.9	6
36	Fabrication of fluorescent hybrid nanomaterials based on carbon dots and its applications for improving the selective detection of Fe (III) in different matrices and cellular imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 119033	4.4	6
35	Bioinspired from mussel and salivary acquired pellicle: a universal dual-functional polypeptide coating for implant materials. <i>Materials Today Chemistry</i> , 2019 , 14, 100205	6.2	5
34	Calcium carbonate deposition on layer-by-layer systems assembled from star polymers. <i>Journal of Polymer Research</i> , 2013 , 20, 1	2.7	5
33	Biomimetic synthesis of chondroitin sulfate-analogue hydrogels for regulating osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells. <i>Materials Science and Engineering C</i> , 2020 , 117, 111368	8.3	5
32	A facile strategy to construct silk fibroin based GTR membranes with appropriate mechanical performance and enhanced osteogenic capacity. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 10407-10415	7.3	5
31	Fabrication of multi-functional carbon dots based on "one stone, three birds" strategy and their applications for the dual-mode Fe detection, effective promotion on cell proliferation and treatment on ferric toxicosis. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 767-782	7-3	5
30	Zwitterionic PMCP-functionalized titanium surface resists protein adsorption, promotes cell adhesion, and enhances osteogenic activity. <i>Colloids and Surfaces B: Biointerfaces</i> , 2021 , 206, 111928	6	5
29	Fabrication of a multifunctional hydrogel with a robust interface bioinspired by the structure of the dentogingival junction. <i>Chemical Communications</i> , 2020 , 56, 3633-3636	5.8	4
28	A Stable Cell Membrane-Based Coating with Antibiofouling and Macrophage Immunoregulatory Properties for Implants at the Macroscopic Level. <i>Chemistry of Materials</i> , 2021 , 33, 7994-8006	9.6	4
27	Direct Current Stimulation for Improved Osteogenesis of MC3T3 Cells Using Mineralized Conductive Polyaniline. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 852-861	5.5	4
26	A mussel-bioinspired multi-functional hyperbranched polymeric coating with integrated antibacterial and antifouling activities for implant interface modification. <i>Polymer Chemistry</i> , 2021 , 12, 3413-3426	4.9	4
25	Chondroitin-analogue decorated magnetic nanoparticles via a click reaction for selective adsorption of low-density lipoprotein. <i>Polymer Chemistry</i> , 2019 , 10, 2540-2550	4.9	3

24	Injectable hydrogels based on gellan gum promotes in situ mineralization and potential osteogenesis. <i>European Polymer Journal</i> , 2020 , 141, 110091	5.2	3
23	Hyaluronic acid bioinspired polymers for the regulation of cell chondrogenic and osteogenic differentiation. <i>International Journal of Biological Macromolecules</i> , 2020 , 161, 1011-1020	7.9	3
22	From kPa to MPa: An Environmentally Friendly Way to Prepare a Polysaccharide Hydrogel with Tunable Mechanical Properties. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 4829-4834	3.9	3
21	pH-sensitive nanocarriers for enhanced tumor retention and rapid intracellular drug release. <i>Journal of Controlled Release</i> , 2015 , 213, e111-2	11.7	3
20	A facile strategy to modulate the fluorescent properties of star polymers by varying the arm numbers. <i>Journal of Polymer Research</i> , 2012 , 19, 1	2.7	3
19	Multifunctional Biomedical Materials Derived from Biological Membranes. <i>Advanced Materials</i> , 2021 , e2107406	24	3
18	Heterogenous hydrogel mimicking the osteochondral ECM applied to tissue regeneration. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 8646-8658	7.3	3
17	Thermosensitive Polysaccharide Hydrogel As a Versatile Platform for Prolonged Salmon Calcitonin Release and Calcium Regulation. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 4077-4086	5.5	2
16	Recent advances of zwitterionic-based topological polymers for biomedical applications <i>Journal of Materials Chemistry B</i> , 2022 ,	7.3	2
15	Bioinspired by both mussel foot protein and bone sialoprotein: universal adhesive coatings for the promotion of mineralization and osteogenic differentiation. <i>Polymer Chemistry</i> , 2020 , 11, 4995-5004	4.9	2
14	Influence of microcapsule parameters and initiator concentration on the self-healing capacity of resin-based dental composites. <i>Dental Materials</i> , 2021 , 37, 403-412	5.7	2
13	Electrically facilitated mineralization of osteoblasts and polypyrrole micro-bowl coatings for promotion of the osteogenic activity. <i>Colloids and Interface Science Communications</i> , 2021 , 43, 100450	5.4	2
12	Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 8501-8511	7.3	2
11	Spatiotemporally controlled calcitonin delivery: Long-term and targeted therapy of skeletal diseases. <i>Journal of Controlled Release</i> , 2021 , 338, 486-504	11.7	2
10	Protoplast Formation and Regeneration Conditions of Streptomyces gilvosporeus 2009,		1
9	Supramolecular nanoassemblies of salmon calcitonin and aspartame for fibrillation inhibition and osteogenesis improvement. <i>International Journal of Pharmaceutics</i> , 2021 , 593, 120171	6.5	1
8	Sulfated alginate based complex for sustained calcitonin delivery and enhanced osteogenesis. <i>Biomedical Materials (Bristol)</i> , 2020 ,	3.5	1
7	An Instant, Repeatable and Universal Supramolecular Adhesive Based on Natural Small Molecules for Dry/Wet Environments. <i>Chemical Engineering Journal</i> , 2022 , 442, 136206	14.7	1

LIST OF PUBLICATIONS

6	Barnacle-Inspired robust and aesthetic Janus patch with instinctive wet adhesive for oral ulcer treatment. <i>Chemical Engineering Journal</i> , 2022 , 444, 136580	14.7	1
5	Cell-Membrane-Targeted Drug Delivery System Based on Choline-Phosphate-Functionalized ECyclodextrin. <i>Macromolecular Bioscience</i> , 2020 , 20, e2000069	5.5	0
4	Functional biomedical materials derived from proteins in the acquired salivary pellicle. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 6507-6520	7.3	0
3	Polylactic acid film surface functionalized by zwitterionic poly[2-(methacryloyloxy)ethyl choline phosphate] with improved biocompatibility <i>Colloids and Surfaces B: Biointerfaces</i> , 2022 , 214, 112461	6	O
2	Self-Organized Spatiotemporal Mineralization of Hydrogel: A Simulant of Osteon Small, 2021, e21066	49 1	0
1	Polypeptide coatings on biominerals with superior antimicrobial and antifouling properties inspired by human salivary proteins. <i>Applied Materials Today</i> , 2022 , 27, 101446	6.6	