Jiuke Mu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3124204/publications.pdf Version: 2024-02-01

LUIKE MU

#	Article	IF	CITATIONS
1	Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Science Advances, 2015, 1, e1500533.	4.7	312
2	Sheath-run artificial muscles. Science, 2019, 365, 150-155.	6.0	218
3	Ultrathin, Washable, and Largeâ€Area Graphene Papers for Personal Thermal Management. Small, 2017, 13, 1702645.	5.2	177
4	Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nature Communications, 2018, 9, 590.	5.8	159
5	An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors. Advanced Materials, 2016, 28, 9491-9497.	11.1	147
6	Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science, 2019, 366, 216-221.	6.0	133
7	Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5359-5364.	3.3	114
8	Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science, 2021, 371, 494-498.	6.0	110
9	A multi-responsive water-driven actuator with instant and powerful performance for versatile applications. Scientific Reports, 2015, 5, 9503.	1.6	91
10	A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy, 2017, 39, 673-683.	8.2	71
11	Wearable Thermoelectric Devices Based on Au-Decorated Two-Dimensional MoS ₂ . ACS Applied Materials & Interfaces, 2018, 10, 33316-33321.	4.0	57
12	All-Nanoparticle Self-assembly ZnO/TiO ₂ Heterojunction Thin Films with Remarkably Enhanced Photoelectrochemical Activity. ACS Applied Materials & Interfaces, 2014, 6, 5719-5725.	4.0	49
13	Flexible and thermostable thermoelectric devices based on large-area and porous all-graphene films. Carbon, 2016, 107, 146-153.	5.4	47
14	Graphene-carbon nanotube papers for energy conversion and storage under sunlight and heat. Carbon, 2015, 95, 150-156.	5.4	24
15	Single-walled carbon nanotubes/polyaniline-coated polyester thermoelectric textile with good interface stability prepared by ultrasonic induction. RSC Advances, 2016, 6, 90347-90353.	1.7	24
16	A flexible metallic actuator using reduced graphene oxide as a multifunctional component. Nanoscale, 2017, 9, 12963-12968.	2.8	18