Mohammad Jahazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3124192/publications.pdf

Version: 2024-02-01

71532 70961 6,991 193 41 76 citations h-index g-index papers 196 196 196 4171 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A review of laser welding techniques for magnesium alloys. Journal of Materials Processing Technology, 2006, 171, 188-204.	3.1	506
2	Strain hardening behavior of a friction stir welded magnesium alloy. Scripta Materialia, 2007, 57, 1004-1007.	2.6	351
3	Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. Materials Science & Science & Properties, Microstructure and Processing, 2008, 472, 179-186.	2.6	307
4	Linear friction welding of Ti-6Al-4V: Processing, microstructure, and mechanical-property inter-relationships. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2149-2164.	1.1	206
5	Hot working behavior of near-α alloy IMI834. Materials Science & Department of the Arthur of the Materials: Properties, Microstructure and Processing, 2005, 396, 50-60.	2.6	201
6	Effect of welding speed on butt joint quality of Ti–6Al–4V alloy welded using a high-power Nd:YAG laser. Optics and Lasers in Engineering, 2009, 47, 1231-1241.	2.0	180
7	Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments. Metals, 2017, 7, 196.	1.0	179
8	Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy. Materials & Design, 2011, 32, 1-11.	5.1	166
9	Microstructural characteristics of forged and heat treated Inconel-718 disks. Materials & Design, 2013, 52, 791-800.	5.1	158
10	Texture heterogeneities induced by subtransus processing of near α titanium alloys. Acta Materialia, 2008, 56, 4298-4308.	3.8	153
11	Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet. Acta Materialia, 2005, 53, 3535-3543.	3.8	152
12	Process optimisation and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin. Materials & Design, 2010, 31, 3324-3330.	5.1	143
13	Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 895-905.	1.1	142
14	Coarsening and dissolution of γ′ precipitates during solution treatment of AD730â,,¢ Ni-based superalloy: Mechanisms and kinetics models. Journal of Alloys and Compounds, 2016, 658, 981-995.	2.8	128
15	The influence of heat treatment conditions on γ′ characteristics in Udimet® 720. Materials Science & Lamp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 373, 286-293.	2.6	121
16	Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4ÂkW Nd:YAG laser. Journal of Materials Science, 2009, 44, 4557-4571.	1.7	114
17	Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy. Materials Characterization, 2009, 60, 370-376.	1.9	105
18	Influence of thermomechanical processing on microstructural evolution in near-î± alloy IMI834. Materials Science & Description of the Materials Science and Processing, 2006, 416, 300-311.	2.6	102

#	Article	IF	Citations
19	Microstructure evolution at the onset of discontinuous dynamic recrystallization: A physics-based model of subgrain critical size. Journal of Alloys and Compounds, 2014, 587, 199-210.	2.8	101
20	On material flow in Friction Stir Welded Al alloys. Journal of Materials Processing Technology, 2017, 239, 284-296.	3.1	95
21	Flow stress prediction during hot working of near-α titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 447, 99-110.	2.6	94
22	Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Materials & Design, 2014, 58, 381-389.	5.1	94
23	Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Materials Science & Digneering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 496-507.	2.6	88
24	A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1639-1669.	1.1	84
25	The non-equilibrium segregation of boron on original and moving austenite grain boundaries. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 335, 49-61.	2.6	80
26	Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni–Si–B filler metal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 423, 269-281.	2.6	77
27	The influence of hot forging conditions on the microstructure and mechanical properties of two microalloyed steels. Journal of Materials Processing Technology, 2001, 113, 594-598.	3.1	74
28	Kinetics and Mechanisms of γ′ Reprecipitation in a Ni-based Superalloy. Scientific Reports, 2016, 6, 28650.	1.6	73
29	Study of the variant selection in sharp textured regions of bimodal IMI 834 billet. Materials Science & Samp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 430, 157-164.	2.6	69
30	Multiâ€Scale Analysis of INâ€₹18 Microstructure Evolution During Linear Friction Welding. Advanced Engineering Materials, 2008, 10, 573-578.	1.6	64
31	The influence of flow-forming parameters and microstructure on the quality of a D6ac steel. Journal of Materials Processing Technology, 2000, 103, 362-366.	3.1	62
32	Mechanical Property and Microstructure of Linear Friction Welded WASPALOY. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 729-744.	1.1	62
33	The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel. Journal of Materials Processing Technology, 2000, 103, 276-279.	3.1	50
34	Formation of Widmanst $\tilde{A}_{\mathbf{t}}$ en ferrite at very high temperatures in the austenite phase field. Acta Materialia, 2016, 109, 23-31.	3.8	49
35	Continuous Wave ND:YAG Laser Welding of Sand-Cast ZE41A-T5 Magnesium Alloys. Materials and Manufacturing Processes, 2005, 20, 987-1004.	2.7	46
36	Nd:YAG laser welding of aerospace grade ZE41A magnesium alloy: Modeling and experimental investigations. Materials Chemistry and Physics, 2008, 109, 61-76.	2.0	46

#	Article	IF	Citations
37	Effect of tool geometry and welding speed on mechanical properties of dissimilar AA2198–AA2024 FSWed joint. Journal of Manufacturing Processes, 2018, 34, 86-95.	2.8	46
38	Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion. Scientific Reports, 2021, 11, 2020.	1.6	46
39	Substructure of high temperature compressed titanium alloy IMI 834. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 188-193.	2.6	45
40	Optimization of Processing Parameters During Laser Cladding of ZE41A-T5 Magnesium Alloy Castings Using Taguchi Method. Materials and Manufacturing Processes, 2008, 23, 413-418.	2.7	43
41	Evolution of flow stress and microstructure during isothermal compression of Waspaloy. Materials Science & Science & Properties, Microstructure and Processing, 2014, 615, 497-510.	2.6	43
42	Tool Wear Characteristics and Effect on Microstructure in Ti-6Al-4V Friction Stir Welded Joints. Metals, 2016, 6, 275.	1.0	42
43	Maximizing the integrity of linear friction welded Waspaloy. Materials Science & Discrete amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 555, 117-130.	2.6	41
44	The effect of heating rate on microstructure and texture formation during annealing of heavily cold-rolled equiatomic CoCrFeMnNi high entropy alloy. Journal of Alloys and Compounds, 2016, 688, 752-761.	2.8	41
45	Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades. Materials Science & Science and Processing, 2015, 642, 230-240.	2.6	39
46	Dynamic recrystallization in Monel400 Ni-Cu alloy: Mechanism and role of twinning. Materials Science & Science & Properties, Microstructure and Processing, 2019, 744, 376-385.	2.6	39
47	The effect of SiC/Al ₂ O ₃ particles used during FSP on mechanical properties of AZ91 magnesium alloy. International Journal of Materials Research, 2014, 105, 369-374.	0.1	38
48	Banded structures in friction stir welded Al alloys. Journal of Materials Processing Technology, 2015, 221, 269-278.	3.1	38
49	Linear Friction Welding of IN-718 Process Optimization and Microstructure Evolution. Advanced Materials Research, 2007, 15-17, 357-362.	0.3	37
50	Influence of Homogenization and Solution Treatments Time on the Microstructure and Hardness of Inconel 718 Fabricated by Laser Powder Bed Fusion Process. Materials, 2020, 13, 2574.	1.3	37
51	Local mechanical properties, microstructure, and microtexture in friction stir welded Ti-6Al-4V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 749, 166-175.	2.6	36
52	Microstructure and mechanical properties of surface and subsurface layers in broached and shot-peened Inconel-718 gas turbine disc fir-trees. Materials Characterization, 2017, 132, 53-68.	1.9	35
53	Microstructural and Microhardness Evolution from Homogenization and Hot Isostatic Pressing on Selective Laser Melted Inconel 718: Structure, Texture, and Phases. Journal of Manufacturing and Materials Processing, 2018, 2, 30.	1.0	33
54	Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 598, 413-419.	2.6	32

#	Article	IF	CITATIONS
55	An automated method to analyze separately the microtextures of primary αp grains and the secondary αs inherited colonies in bimodal titanium alloys. Materials Characterization, 2005, 54, 216-222.	1.9	31
56	In Situ Study of Phase Transformations during Non-Isothermal Tempering of Bainitic and Martensitic Microstructures. Metals, 2017, 7, 346.	1.0	31
57	Numerical analysis of the dwell phase in friction stir welding and comparison with experimental data. Materials Science & Science & Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4152-4160.	2.6	30
58	Design and optimisation of a phased array transducer for ultrasonic inspection of large forged steel ingots. NDT and E International, 2019, 103, 119-129.	1.7	28
59	Dissolution and precipitation kinetics of \hat{l}^3 in nickel base superalloy Udimet 520. Materials Science and Technology, 2002, 18, 458-462.	0.8	26
60	Modeling Grain Size and Strain Rate in Linear Friction Welded Waspaloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4230-4238.	1.1	26
61	Dynamic Recrystallization and Precipitation in 13Cr Super-Martensitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2219-2231.	1.1	26
62	High temperature deformation of nickel base superalloy Udimet 520. Materials Science and Technology, 2004, 20, 161-166.	0.8	25
63	Strain induced ?? precipitation in nickel base superalloy Udimet 720 using a stress relaxation based technique. Scripta Materialia, 2005, 52, 771-776.	2.6	25
64	Predicting residual stresses and distortion during multisequence welding of large size structures using FEM. International Journal of Advanced Manufacturing Technology, 2014, 73, 409-419.	1.5	25
65	Determination of the critical stress for the initiation of dynamic transformation in commercially pure titanium. Scripta Materialia, 2017, 133, 83-85.	2.6	25
66	Linear friction welding of AD730â,,¢ Ni-base superalloy: Process-microstructure-property interactions. Materials and Design, 2019, 183, 108117.	3.3	25
67	Cold spray deposition characteristic and bonding of CrMnCoFeNi high entropy alloy. Surface and Coatings Technology, 2021, 425, 127748.	2.2	25
68	On the hot cracking of HSLA steel welds: Role of epitaxial growth and HAZ grain size. Journal of Manufacturing Processes, 2019, 41, 242-251.	2.8	24
69	On the impacts of tool geometry and cutting conditions in straight turning of aluminum alloys 6061-T6: an experimentally validated numerical study. International Journal of Advanced Manufacturing Technology, 2020, 106, 4547-4565.	1.5	24
70	Thin Gauge Titanium Manufacturing Using Multiple-Pass Electron Beam Welding. Materials and Manufacturing Processes, 2006, 21, 439-451.	2.7	23
71	Linear friction welding of Al–Cu Part 2 – Interfacial characteristics. Canadian Metallurgical Quarterly, 2011, 50, 360-370.	0.4	23
72	Microstructural Evaluation of Friction Stir Processed AZ31B-H24 Magnesium Alloy. Canadian Metallurgical Quarterly, 2007, 46, 425-432.	0.4	22

#	Article	IF	CITATIONS
73	Alternative phase transformation path in cryogenically treated AISI D2 tool steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 634, 32-36.	2.6	22
74	Influence of prior cold deformation on microstructure evolution of AISI D2 tool steel after hardening heat treatment. Journal of Manufacturing Processes, 2016, 22, 115-119.	2.8	22
75	Ti–6Al–4V electron beam weld qualification using laser scanning confocal microscopy. Materials Characterization, 2005, 54, 254-262.	1.9	21
76	Analysis of integrity and microstructure of linear friction welded Waspaloy. Materials Characterization, 2015, 104, 149-161.	1.9	21
77	Hot compression behavior and microstructure of selectively laser-melted IN718 alloy. International Journal of Advanced Manufacturing Technology, 2018, 96, 371.	1.5	21
78	Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel. Journal of Materials Research and Technology, 2020, 9, 12102-12114.	2.6	21
79	Twin-assisted precipitation during hot compression of an Mg-Gd-Zn-Zr magnesium alloy. Materials Science &	2.6	21
80	An investigation to the effect of deformation-heat treatment cycle on the eutectic morphology and mechanical properties of a Thixocast A356 alloy. Materials Characterization, 2009, 60, 817-823.	1.9	20
81	Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730â,,¢: Evolution of strengthening phases. Journal of Materials Science and Technology, 2022, 96, 248-261.	5.6	20
82	Microstructure Evolution During Transient Liquid Phase Bonding of Alloy 617. Metallography, Microstructure, and Analysis, 2013, 2, 170-182.	0.5	19
83	Precipitation behaviour and mechanical properties of a new wrought high entropy superalloy. Materials Science & Department of the Materials of the American Science and Processing, 2019, 749, 271-280.	2.6	18
84	Influence of Process Parameters on Microstructure Evolution During Hot Deformation of a Eutectic High-Entropy Alloy (EHEA). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6406-6420.	1.1	18
85	Assessing the scale contributing factors of three carbide-free bainitic steels: A complementary theoretical and experimental approach. Materials and Design, 2021, 197, 109217.	3.3	18
86	Effect of heat treatments on microstructural and mechanical characteristics of dissimilar friction stir welded 2198/2024 aluminum alloys. Journal of Adhesion Science and Technology, 2022, 36, 221-239.	1.4	18
87	Cracking mechanisms in large size ingots of high nickel content low alloyed steel. Engineering Failure Analysis, 2016, 68, 122-131.	1.8	17
88	On the Occurrence of Liquation During Linear Friction Welding of Ni-Based Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2886-2899.	1.1	17
89	Grain size and misorientation evolution in linear friction welding of additively manufactured IN718 to forged superalloy AD730â,,¢. Materials Characterization, 2021, 171, 110766.	1.9	17
90	Deformation and Recrystallization Behavior of the Cast StructureÂin Large Size, High Strength Steel Ingots: Experimentation and Modeling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4297-4313.	1.1	16

#	Article	IF	CITATIONS
91	Effect of multipass deformation at elevated temperatures on the flow behavior and microstructural evolution in Ti-6Al-4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 119-124.	2.6	16
92	FEM modeling and experimental validation of quench-induced distortions of large size steel forgings. Journal of Manufacturing Processes, 2020, 58, 592-605.	2.8	16
93	Effect of turning environments and parameters on surface integrity of AA6061-T6: experimental analysis, predictive modeling, and multi-criteria optimization. International Journal of Advanced Manufacturing Technology, 2020, 110, 2669-2683.	1.5	16
94	Optimization of bead spacing during laser cladding of ZE41A-T5 magnesium alloy castings. Journal of Materials Processing Technology, 2008, 205, 322-331.	3.1	15
95	Investigation of α platelet boundaries in a near-α titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 492, 450-454.	2.6	15
96	Evolution of A-Type Macrosegregation in Large Size Steel Ingot After Multistep Forging and Heat Treatment. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 1046-1055.	1.0	15
97	Experimental and unsteady CFD analyses of the heating process of large size forgings in a gas-fired furnace. Case Studies in Thermal Engineering, 2019, 14, 100428.	2.8	15
98	Impact Toughness and Tensile Properties Improvement through Microstructure Control in Hot Forged Nb-V Microalloyed Steel. ISIJ International, 2005, 45, 272-280.	0.6	14
99	Characteristics of Austenite Transformation During Post Forge Cooling of Large-Size High Strength Steel Ingots. Metallography, Microstructure, and Analysis, 2014, 3, 281-297.	0.5	14
100	Friction stir lap welding of 5456 aluminum alloy with different sheet thickness: process optimization and microstructure evolution. International Journal of Advanced Manufacturing Technology, 2016, 82, 39-48.	1.5	14
101	The role of ausforming in the stability of retained austenite in a medium-C carbide-free bainitic steel. Journal of Materials Research and Technology, 2020, 9, 7762-7776.	2.6	14
102	Examination and verification of the filtration mechanism of cake mode during the pressure filtration tests of liquid Al–Si cast alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 408, 234-242.	2.6	13
103	The Determination of Optimum Forging Conditions for the Production of High Strength-High Impact Toughness Automotive Parts. Materials and Manufacturing Processes, 2006, 21, 105-110.	2.7	13
104	Dissolution kinetics and morphological changes of $\hat{I}^3 \hat{a} \in \mathbb{Z}^2$ in AD730TM superalloy. MATEC Web of Conferences, 2014, 14, 13005.	0.1	13
105	Accurate determination of damaged subsurface layers in machined Inconel 718. International Journal of Advanced Manufacturing Technology, 2017, 88, 3419-3427.	1.5	13
106	Retained Austenite Decomposition and Carbide Precipitation during Isothermal Tempering of a Medium-Carbon Low-Alloy Bainitic Steel. Materials, 2018, 11, 1441.	1.3	13
107	The development of an optimum manufacturing and material selection process for the fabrication of labyrinth seal strips. Journal of Materials Processing Technology, 2004, 152, 272-275.	3.1	12
108	Electron beam freeforming on type 321 stainless steel using BNi-2 brazing paste. Materials Science and Technology, 2005, 21, 613-618.	0.8	12

#	Article	IF	Citations
109	Martensitic transformation in AISI D2 tool steel during continuous cooling to 173ÂK. Journal of Materials Science, 2015, 50, 5758-5768.	1.7	12
110	Influence of cryogenic process parameters on microstructure and hardness evolution of AISI D2 tool steel. International Journal of Advanced Manufacturing Technology, 2016, 85, 881-890.	1.5	12
111	High temperature creep properties of a linear friction welded newly developed wrought Ni-based superalloy. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2018, 710, 214-226.	2.6	12
112	Influence of strain rate on dynamic transformation of austenite in an as-cast medium-carbon low-alloy steel. Materialia, 2018, 1, 155-167.	1.3	12
113	A viscoplastic model based on a variable strain rate sensitivity index for superplastic sheet metals. International Journal of Material Forming, 2019, 12, 693-702.	0.9	12
114	Optimization of the Post-Process Heat Treatment of Inconel 718 Superalloy Fabricated by Laser Powder Bed Fusion Process. Metals, 2021, 11, 144.	1.0	12
115	Finite Element Simulation of High-Speed Blow Forming of an Automotive Component. Metals, 2018, 8, 901.	1.0	11
116	On the Effect of Filling Rate on Positive Macrosegregation Patterns in Large Size Cast Steel Ingots. Applied Sciences (Switzerland), 2018, 8, 1878.	1.3	11
117	Determination of the Critical Stress Associated with Dynamic Phase Transformation in Steels by Means of Free Energy Method. Metals, 2018, 8, 360.	1.0	11
118	Characterization of Subsurface Microstructural Alterations Induced by Hard Turning of Inconel 718. Journal of Materials Engineering and Performance, 2019, 28, 7016-7024.	1.2	11
119	Prediction of heat transfer coefficient during quenching of large size forged blocks using modeling and experimental validation. Case Studies in Thermal Engineering, 2019, 13, 100379.	2.8	11
120	Microstructure Evolution of Selective Laser Melted Inconel 718: Influence of High Heating Rates. Metals, 2020, 10, 587.	1.0	11
121	Formation of precipitates in parallel arrays on LPSO structures during hot deformation of GZ41K magnesium alloy. Materials Characterization, 2017, 131, 234-243.	1.9	10
122	Influence of thermomechanical shrinkage on macrosegregation during solidification of a large-sized high-strength steel ingot. International Journal of Advanced Manufacturing Technology, 2018, 99, 3035-3048.	1.5	10
123	Hot ductility behavior of AD730â,,¢ nickel-base superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138391.	2.6	10
124	Die-sinking EDM of Al6061-T6: interactions between process parameters, process performance, and surface characteristics. International Journal of Advanced Manufacturing Technology, 2020, 107, 333-342.	1.5	10
125	Influence of the cooling rate below Ms on the martensitic transformation in a low alloy medium-carbon steel. Journal of Materials Research and Technology, 2021, 12, 234-242.	2.6	10
126	Assessing Microstructure-Local Mechanical Properties in Friction Stir Welded 6082-T6 Aluminum Alloy. Metals, 2020, 10, 1244.	1.0	9

#	Article	IF	CITATIONS
127	Simulation and experimental validation of the effect of superheat on macrosegregation in large-size steel ingots. International Journal of Advanced Manufacturing Technology, 2020, 107, 167-175.	1.5	9
128	Effects of ausforming temperature on carbide-free bainite transformation and its correlation to the transformation plasticity strain in a medium C- Si-rich steel. Materials Characterization, 2021, 176, 111124.	1.9	9
129	Estimation of resistance of filter media used for Prefil Footprinter tests of liquid aluminium alloys. Materials Science and Technology, 2005, 21, 1192-1198.	0.8	8
130	On the Role of Chromium in Dynamic Transformation of Austenite. Metals and Materials International, 2019, 25, 559-569.	1.8	8
131	Low and High Speed Orthogonal Cutting of AA6061-T6 under Dry and Flood-Coolant Modes: Tool Wear and Residual Stress Measurements and Predictions. Materials, 2021, 14, 4293.	1.3	8
132	The influence of thermomechanical parameters on the earing behaviour of 1050 and 1100 aluminium alloys. Journal of Materials Processing Technology, 1997, 63, 610-613.	3.1	7
133	The influence of thermochemical treatments on interface quality and properties of copper/carbon-fibre composites. Composites Science and Technology, 1999, 59, 1969-1975.	3.8	7
134	Discrepancy between fatigue and dwell-fatigue behavior of near alpha titanium alloys simulated by cellular automata. International Journal of Fatigue, 2013, 51, 49-56.	2.8	7
135	Influence of predeformation on microstructure evolution of superplastically formed Al 5083 alloy. International Journal of Advanced Manufacturing Technology, 2017, 88, 2929-2937.	1.5	7
136	Numerical Simulation of Water Quenching of Large Size Steel Forgings: Effects of Macrosegregation and Grain Size on Phase Distribution. Journal of Manufacturing and Materials Processing, 2018, 2, 34.	1.0	7
137	Influence of initial microstructure and grain size on transformation of bainite to austenite in large size forgings. Journal of Iron and Steel Research International, 2018, 25, 554-562.	1.4	7
138	Development and Microstructural Characterization of a New Wrought High Entropy Superalloy. Metals and Materials International, 2020, 26, 591-602.	1.8	7
139	Influence of eutectic phase precipitation on cracking susceptibility during forging of a martensitic stainless steel for turbine shaft applications. Journal of Materials Research and Technology, 2021, 13, 260-270.	2.6	7
140	MICROSTRUCTURAL MODELING OF COLD CREEP/FATIGUE IN NEAR ALPHA TITANIUM ALLOYS USING CELLULAR AUTOMATA METHOD. Transactions of the Canadian Society for Mechanical Engineering, 2008, 32, 195-212.	0.3	6
141	A New Approach in Optimizing the Induction Heating Process Using Flux Concentrators: Application to 4340 Steel Spur Gear. Journal of Materials Engineering and Performance, 2014, 23, 3092-3099.	1.2	6
142	Variation of strain rate sensitivity index of a superplastic aluminum alloy in different testing methods. AIP Conference Proceedings, 2017, , .	0.3	6
143	Linear friction welding process simulation of Ti-6Al-4V alloy: a heat transfer analysis of the conditioning phase. Procedia Manufacturing, 2018, 15, 1382-1390.	1.9	6
144	Influence of Nickel on Highâ€Temperature Oxidation and Characteristics of Oxide Layers in Two Highâ€Strength Steels. Steel Research International, 2020, 91, 1900536.	1.0	6

#	Article	IF	CITATIONS
145	On the Impact of Microsegregation Model on the Thermophysical and Solidification Behaviors of a Large Size Steel Ingot. Metals, 2020, 10, 74.	1.0	6
146	Analysis and optimization of surface roughness in turning of AA6061-T6 under various environments and parameters. Procedia CIRP, 2021, 101, 17-20.	1.0	6
147	Modeling of the microstructure alteration induced by hard turning of Inconel 718. International Journal of Advanced Manufacturing Technology, 2017, 93, 3705-3712.	1.5	6
148	Stability of the microstructure and elevated-temperature mechanical properties of additively manufactured Inconel 718 superalloy subjected to long-term in-service thermal cycling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142790.	2.6	6
149	Characterization of Electron Beam Welded 17-4 PH Stainless Steel. Canadian Metallurgical Quarterly, 2008, 47, 413-435.	0.4	5
150	IMPROVING THE FORMABILITY OF STAINLESS STEEL 321 THROUGH MULTISTEP DEFORMATION FOR HYDROFORMING APPLICATIONS. Transactions of the Canadian Society for Mechanical Engineering, 2013, 37, 39-52.	0.3	5
151	A Proposition for New Quality 3D Indexes to Measure Surface Roughness. Procedia CIRP, 2016, 46, 327-330.	1.0	5
152	Analysis of Void Closure during Open Die Forging Process of Large Size Steel Ingots. Key Engineering Materials, 2016, 716, 579-585.	0.4	5
153	Mechanical and Metallurgical Evolution of Stainless Steel 321 in a Multi-step Forming Process. Journal of Materials Engineering and Performance, 2016, 25, 1526-1538.	1.2	5
154	Kinetics of Post-dynamic Coarsening and Reverse Transformation in Ti-6Al-4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5956-5961.	1.1	5
155	Dynamic Phase Transformation Behavior of a Nb-microalloyed Steel during Roughing Passes at Temperatures above the Ae3. Metals, 2019, 9, 334.	1.0	5
156	Retransformation of dynamically induced ferrite during physical simulation of Steckel mill hot rolling. Journal of Materials Research and Technology, 2020, 9, 10254-10264.	2.6	5
157	3D FE modeling and experimental analysis of residual stresses and machining characteristics induced by dry, MQL, and wet turning of AA6061-T6. Machining Science and Technology, 2021, 25, 957-983.	1.4	5
158	Influence of thermally grown oxide layers thickness on temperature evolution during the forging of large size steel ingots. Materials Chemistry and Physics, 2022, 275, 125269.	2.0	5
159	\hat{l}^2 Microtexture Analysis in Correlation with HCP Textured Regions Observed in a Forged Near Alpha Titanium Alloy. Solid State Phenomena, 2005, 105, 127-132.	0.3	4
160	Thermomechanical Characterization of Mg-9Al-1Zn Alloy Using Power Dissipation Maps. Journal of Materials Engineering and Performance, 2013, 22, 3306-3314.	1.2	4
161	Hot Deformation Behavior of a Nickel-modified AISI 4330 Steel. ISIJ International, 2018, 58, 1711-1720.	0.6	4
162	Prediction of material behavior during biaxial stretching of superplastic 5083 aluminum alloy. International Journal of Advanced Manufacturing Technology, 2019, 102, 2357-2366.	1.5	4

#	Article	IF	Citations
163	Investigation on Surface Quality of a Rapidly Solidified Al–50%Si Alloy Component for Deep-Space Applications. Materials, 2020, 13, 3412.	1.3	4
164	Optimization of furnace residence time and loading pattern during heat treatment of large size forgings. International Journal of Advanced Manufacturing Technology, 2021, 113, 2447-2460.	1.5	4
165	Microstructure-Based FEM Modeling of Phase Transformation During Quenching of Large-Size Steel Forgings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1883-1900.	1.1	4
166	Microstructural evolution during tempering of an ausformed carbide-free low temperature bainitic steel. Materials and Design, 2021, 210, 110082.	3.3	4
167	Effect of Plastic Anisotropy on the Kinetics of Static Softening in AA2024–T3 Aluminum Alloy. Metals and Materials International, 2022, 28, 2042-2058.	1.8	4
168	FE Modelling and Prediction of Macrosegregation Patterns in Large Size Steel Ingots: Influence of Filling Rate. Metals, 2022, 12, 29.	1.0	4
169	The influence of thermomechanical treatment on the microstructure and mechanical properties of aisi 4130 steel. Metals and Materials International, 1998, 4, 818-822.	0.2	3
170	Application of Shear Punch Testing to Study Microstructure-Property Relationships in Electron Beam Welded 17-4 PH Stainless Steel. Canadian Metallurgical Quarterly, 2009, 48, 317-326.	0.4	3
171	A Numerical Thermal Analysis of the Heating Process of Large Size Forged Ingots. Materials Science Forum, 2018, 941, 2278-2283.	0.3	3
172	Influence of Local Mechanical Parameters on Ultrasonic Wave Propagation in Large Forged Steel Ingots. Journal of Nondestructive Evaluation, 2019, 38, 1.	1.1	3
173	A comparative analysis of chip shape, residual stresses, and surface roughness in minimum-quantity-lubrication turning with various flow rates. International Journal of Advanced Manufacturing Technology, 2022, 121, 3977-3987.	1.5	3
174	Surface characterization of die inserts used for LED lamp plastic lenses. International Journal of Advanced Manufacturing Technology, 2017, 88, 3395-3403.	1.5	2
175	3D FEM Simulation of the Effect of Cooling Rate on SDAS and Macrosegregation of a High Strength Steel. Materials Science Forum, 2018, 941, 2360-2364.	0.3	2
176	Influence of Starting Microstructure on Dilatation Behavior during Tempering of a High Strength Steel. Materials Science Forum, 0, 941, 305-310.	0.3	2
177	Prediction of Steel Transformation Temperatures Using Thermodynamic Modeling and Design of Experiments (DOE). Materials Science Forum, 2018, 941, 2284-2289.	0.3	2
178	Characterization of mechanical properties and formability of a superplastic Al-Mg alloy. Journal of Physics: Conference Series, 2018, 1063, 012165.	0.3	2
179	Phased array inspection of large size forged steel parts. AIP Conference Proceedings, 2018, , .	0.3	2
180	Effect of Double Hit Hot Deformation on the Evolution of Dynamically Transformed Ferrite. Metals and Materials International, 2021, 27, 4307-4321.	1.8	2

#	Article	IF	CITATIONS
181	The Effect of Retained Work Hardening on the Driving Force for Dynamic Transformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5617-5622.	1.1	2
182	Effect of Cooling Rate on Phase Transformation and Microstructure Evolution in a Large Size Forged Ingot of Medium Carbon Low Alloy Steel. Minerals, Metals and Materials Series, 2017, , 413-423.	0.3	1
183	Determination of the Root Causes for Cracking in a Large-Size Cast Ingot of AISI 4317 Steel Using Microstructural Analysis. Metallography, Microstructure, and Analysis, 2018, 7, 203-208.	0.5	1
184	Cracking and Failure in a High Strength Low Alloy Steel during Solidification. Materials Science Forum, 2018, 941, 15-20.	0.3	1
185	Macrosegregation Characteristics of Ferrite and Austenite Stabilizer Elements in Large Size High Strength Steel Ingot. Key Engineering Materials, 0, 846, 82-86.	0.4	1
186	Post-Weld Heat Treatment of Additively Manufactured Inconel 718 Welded to Forged Ni-Based Superalloy AD730 by Linear Friction Welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3475.	1.1	1
187	A FEM Analysis on the Influence of Manganese on Carbon and Chromium Macrosegregation in Large Size Steel Ingot. Materials Science Forum, 0, 1053, 252-257.	0.3	1
188	The Effects of Friction Stir Welding Parameters on the Characteristics of Banded Structure for Aluminum Alloys. Key Engineering Materials, 2016, 710, 155-159.	0.4	0
189	The influence of deformation-induced microvoids on mechanical failure of AISI A8-Mod martensitic tool steel. , 2017, , .		0
190	Phased array probe for the inspection of large steel forgings. Cogent Engineering, 2021, 8, 1929040.	1.1	0
191	FEM Simulation of the Effect of Mold Initial Temperature on Carbon Macrosegregation in Large-Size Steel Ingots. Materials Science Forum, 0, 1053, 258-263.	0.3	0
192	Interactions Between Dynamic Softening and Strengthening Mechanisms During Hot Forging of a High-Strength Steel. Frontiers in Mechanical Engineering, 2021, 7, .	0.8	0
193	Effect of the ausforming deformation mode on bainitic transformation in a medium carbon high silicon steel. Journal of Materials Research and Technology, 2022, 18, 3428-3442.	2.6	O