
David L Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3124051/publications.pdf Version: 2024-02-01

DAVID | NELSON

#	Article	IF	CITATIONS
1	Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 1991, 65, 905-914.	13.5	3,285
2	Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell, 1991, 67, 1047-1058.	13.5	2,007
3	Absence of expression of the FMR-1 gene in fragile X syndrome. Cell, 1991, 66, 817-822.	13.5	1,408
4	DNA methylation represses FMR-1 transcription in fragile X syndrome. Human Molecular Genetics, 1992, 1, 397-400.	1.4	674
5	Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neuroscience, 2004, 7, 113-117.	7.1	571
6	Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature Genetics, 2000, 26, 191-194.	9.4	505
7	Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nature Genetics, 1994, 8, 88-94.	9.4	468
8	The Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature, 1992, 358, 239-242.	13.7	467
9	X-linked situs abnormalities result from mutations in ZIC3. Nature Genetics, 1997, 17, 305-308.	9.4	406
10	Tissue specific expression of FMR–1 provides evidence for a functional role in fragile X syndrome. Nature Genetics, 1993, 3, 36-43.	9.4	358
11	RNA-Binding Proteins hnRNP A2/B1 and CUGBP1 Suppress Fragile X CGG Premutation Repeat-Induced Neurodegeneration in a Drosophila Model of FXTAS. Neuron, 2007, 55, 565-571.	3.8	309
12	Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG–repeat. Nature Genetics, 1993, 4, 244-251.	9.4	247
13	Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nature Genetics, 1996, 13, 109-113.	9.4	238
14	High functioning fragile X males: Demonstration of an unmethylated fully expanded FMR-1 mutation associated with protein expression. American Journal of Medical Genetics Part A, 1994, 51, 298-308.	2.4	213
15	The Unstable Repeats—Three Evolving Faces of Neurological Disease. Neuron, 2013, 77, 825-843.	3.8	192
16	Isolation of a GCC repeat showing expansion in FRAXF, a fragile site distal to FRAXA and FRAXE. Nature Genetics, 1994, 8, 229-235.	9.4	175
17	Bmal1 and β-Cell Clock Are Required for Adaptation to Circadian Disruption, and Their Loss of Function Leads to Oxidative Stress-Induced β-Cell Failure in Mice. Molecular and Cellular Biology, 2013, 33, 2327-2338.	1.1	175
18	Fine structure of the human FMR1 gene. Human Molecular Genetics, 1993, 2, 1147-1153.	1.4	171

DAVID L NELSON

#	Article	IF	CITATIONS
19	A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Human Molecular Genetics, 2001, 10, 2171-2179.	1.4	165
20	Intragenic loss of function mutations demonstrate the primary role of FMR1 in fragile X syndrome. Nature Genetics, 1995, 10, 483-485.	9.4	152
21	AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with fragile X syndrome. Genetics in Medicine, 2012, 14, 729-736.	1.1	152
22	Atypical Forms of Incontinentia Pigmenti in Male Individuals Result from Mutations of a Cytosine Tract in Exon 10 of NEMO (IKK-γ). American Journal of Human Genetics, 2001, 68, 765-771.	2.6	141
23	Interruptions in the Triplet Repeats of SCA1 and FRAXA Reduce the Propensity and Complexity of Slipped Strand DNA (S-DNA) Formationâ€. Biochemistry, 1998, 37, 2701-2708.	1.2	139
24	Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Human Molecular Genetics, 1996, 5, 899-912.	1.4	136
25	High resolution methylation analysis of the FMR1 gene trinucleotide repeat region in fragile X syndrome. Human Molecular Genetics, 1993, 2, 1659-1665.	1.4	122
26	Fragile X-Related Proteins Regulate Mammalian Circadian Behavioral Rhythms. American Journal of Human Genetics, 2008, 83, 43-52.	2.6	109
27	Altered Hippocampal Synaptic Plasticity in the <i>Fmr1</i> Gene Family Knockout Mouse Models. Journal of Neurophysiology, 2009, 101, 2572-2580.	0.9	108
28	Exaggerated behavioral phenotypes in Fmr1/Fxr2 double knockout mice reveal a functional genetic interaction between Fragile X-related proteins. Human Molecular Genetics, 2006, 15, 1984-1994.	1.4	105
29	Ectopic expression of CGG containing mRNA is neurotoxic in mammals. Human Molecular Genetics, 2009, 18, 2443-2451.	1.4	104
30	Cloning of human and bovine homologs of SNF2/SWI2: a global activator of transcription in yeastS.cerevisiae. Nucleic Acids Research, 1992, 20, 4649-4655.	6.5	100
31	The GABA _A receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle, 2015, 14, 2985-2995.	1.3	87
32	Characterization of a highly polymorphic dinucleotide repeat 150 KB proximal to the fragile X site. American Journal of Medical Genetics Part A, 1992, 43, 237-243.	2.4	82
33	Molecular and phenotypic variation in patients with severe Hunter syndrome. Human Molecular Genetics, 1997, 6, 479-486.	1.4	82
34	NEMO, NFκB signaling and incontinentia pigmenti. Current Opinion in Genetics and Development, 2006, 16, 282-288.	1.5	81
35	NF-κB signaling and human disease. Current Opinion in Genetics and Development, 2001, 11, 300-306.	1.5	79
36	Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo. Journal of Neuroscience, 2016, 36, 7079-7094.	1.7	77

DAVID L NELSON

#	Article	IF	CITATIONS
37	Comparative Genomic Sequence Analysis of the FXR Gene Family: FMR1, FXR1, and FXR2. Genomics, 2001, 78, 169-177.	1.3	76
38	Robust amplification and ethidium-visible detection of the fragile X syndrome CGG repeat usingPfu polymerase. American Journal of Medical Genetics Part A, 1994, 51, 522-526.	2.4	72
39	The adipocyte clock controls brown adipogenesis via TGF-β/BMP signaling pathway. Journal of Cell Science, 2015, 128, 1835-47.	1.2	63
40	Mouse models of the fragile X premutation and fragile X-associated tremor/ataxia syndrome. Journal of Neurodevelopmental Disorders, 2014, 6, 25.	1.5	57
41	Deletion of Fmr1 from Forebrain Excitatory Neurons Triggers Abnormal Cellular, EEG, and Behavioral Phenotypes in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. Cerebral Cortex, 2020, 30, 969-988.	1.6	55
42	Evolution of the cryptic FMR1 CGG repeat. Nature Genetics, 1995, 11, 301-308.	9.4	52
43	Chemical screen reveals small molecules suppressing fragile X premutation rCGC repeat-mediated neurodegeneration in Drosophila. Human Molecular Genetics, 2012, 21, 2068-2075.	1.4	42
44	Desmoplakin and Talin2 Are Novel mRNA Targets of Fragile X–Related Protein-1 in Cardiac Muscle. Circulation Research, 2011, 109, 262-271.	2.0	41
45	FXR1P Limits Long-Term Memory, Long-Lasting Synaptic Potentiation, and De Novo GluA2 Translation. Cell Reports, 2014, 9, 1402-1416.	2.9	40
46	Genetic variation and evolutionary stability of the FMR1 CGG repeat in six closed human populations. , 1996, 64, 220-225.		32
47	A Primate Genome Project Deserves High Priority. Science, 2000, 289, 1295b-1296.	6.0	31
48	GENETICS: The Critical Region in Trisomy 21. Science, 2004, 306, 619-621.	6.0	29
49	MBD5 haploinsufficiency is associated with sleep disturbance and disrupts circadian pathways common to Smith–Magenis and fragile X syndromes. European Journal of Human Genetics, 2015, 23, 781-789.	1.4	29
50	Correction of GSK3ß at young age prevents muscle pathology in mice with myotonic dystrophy type 1. FASEB Journal, 2018, 32, 2073-2085.	0.2	27
51	Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy. Nature Communications, 2019, 10, 797.	5.8	24
52	Genomic Comparisons of Humans and Chimpanzees. Annual Review of Anthropology, 2007, 36, 191-209.	0.4	23
53	The Fragile X proteins Fmrp and Fxr2p cooperate to regulate glucose metabolism in mice. Human Molecular Genetics, 2015, 24, 2175-2184.	1.4	23
54	CGG repeats in RNA modulate expression of TDP-43 in mouse and fly models of fragile X tremor ataxia syndrome. Human Molecular Genetics, 2014, 23, 5906-5915.	1.4	21

DAVID L NELSON

#	Article	IF	CITATIONS
55	The nature and consequences of fragile X syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 1995, 1, 238-244.	3.5	15
56	Reduced mRNA for G3BP in fragile X cells: Evidence of FMR1 gene regulation. , 1999, 84, 268-271.		15
57	Physical and Genetic Characterization Reveals a Pseudogene, an Evolutionary Junction, and Unstable Loci in Distal Xq28. Genomics, 2002, 79, 31-40.	1.3	13
58	Intragenic probe used for diagnostics in fragile X families. American Journal of Medical Genetics Part A, 1992, 43, 192-196.	2.4	11
59	Metabolic pathways modulate the neuronal toxicity associated with fragile X-associated tremor/ataxia syndrome. Human Molecular Genetics, 2019, 28, 980-991.	1.4	10
60	Intercepting IRE1 kinaseâ€FMRP signaling prevents atherosclerosis progression. EMBO Molecular Medicine, 2022, 14, e15344.	3.3	10
61	Functional consequences of postnatal interventions in a mouse model of Fragile X syndrome. Neurobiology of Disease, 2022, 162, 105577.	2.1	9
62	Identification of <i>PSMB5</i> as a genetic modifier of fragile X–associated tremor/ataxia syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
63	Filamin (FLN1),plexin (SEX), major palmitoylated proteinp55 (MPP1), and von-Hippel Lindau binding protein (VBP1) are not involved in incontinentia pigmenti type 2. American Journal of Medical Genetics Part A, 2000, 94, 79-84.	2.4	5
64	Intellectual and developmental disabilities research centers: Fifty years of scientific accomplishments. Annals of Neurology, 2019, 86, 332-343.	2.8	5
65	ASHG Perspectives: A New Voice for ASHG. American Journal of Human Genetics, 2018, 103, 635.	2.6	4
66	Ectopic expression of CGG-repeats alters ovarian response to gonadotropins and leads to infertility in a murine <i>FMR1</i> premutation model. Human Molecular Genetics, 2021, 30, 923-938.	1.4	4
67	Human homologue of the murinebare patches/striated gene is not mutated in incontinentia pigmenti type 2. , 2000, 91, 241-244.		3
68	Simultaneous Screening of the FRAXA and FRAXE Loci for Rapid Detection of FMR1 CGG and/or AFF2 CCG Repeat Expansions by Triplet-Primed PCR. Journal of Molecular Diagnostics, 2021, 23, 941-951.	1.2	3
69	Stephen T. Warren, Ph.D. (1953–2021): A remembrance. American Journal of Human Genetics, 2022, 109, 3-11.	2.6	2
70	Turning the corner from observation to intervention in human genetics. Journal of Genetics and Genomics, 2018, 45, 57-59.	1.7	1
71	2018 Presidential Address: Who Are We?. American Journal of Human Genetics, 2019, 104, 363-372.	2.6	1
72	2016 William Allan Award Introduction: James Gusella 1. American Journal of Human Genetics, 2017, 100, 385-386.	2.6	0

#	Article	IF	CITATIONS
73	Stephen T. Warren 1953–2021. Nature Genetics, 2021, 53, 1117-1118.	9.4	0
74	Stephen T. Warren: Human geneticist who advanced understanding of mutational mechanisms and developmental disorders. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2112969118.	3.3	0
75	Positive Selection of a Pre-expansion CAG Repeat of the Human SCA2 Gene. PLoS Genetics, 2005, preprint, e41.	1.5	0