Scott B Ficarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3123960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translocation of polyubiquitinated protein substrates by the hexameric Cdc48 ATPase. Molecular Cell, 2022, 82, 570-584.e8.	9.7	39
2	Open source fraction collector/MALDI spotter for proteomics. HardwareX, 2022, 11, e00305.	2.2	5
3	On-Chip Preconcentration Microchip Capillary Electrophoresis Based CE-PRM-LIVE for High-Throughput Selectivity Profiling of Deubiquitinase Inhibitors. Analytical Chemistry, 2022, 94, 9508-9513.	6.5	2
4	Cereblon covalent modulation through structure-based design of histidine targeting chemical probes. RSC Chemical Biology, 2022, 3, 1105-1110.	4.1	23
5	Sulfopin is a covalent inhibitor of Pin1 that blocks Myc-driven tumors in vivo. Nature Chemical Biology, 2021, 17, 954-963.	8.0	73
6	BRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damage. Nature Communications, 2021, 12, 3542.	12.8	57
7	Exploring Ligand-Directed <i>N</i> -Acyl- <i>N</i> -alkylsulfonamide-Based Acylation Chemistry for Potential Targeted Degrader Development. ACS Medicinal Chemistry Letters, 2021, 12, 1302-1307.	2.8	5
8	Structure-activity relationship study of THZ531 derivatives enables the discovery of BSJ-01-175 as a dual CDK12/13 covalent inhibitor with efficacy in Ewing sarcoma. European Journal of Medicinal Chemistry, 2021, 221, 113481.	5.5	27
9	PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors. Analytical Chemistry, 2021, 93, 13791-13799.	6.5	20
10	Structure–Activity Relationship Study of Covalent Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 346-352.	2.8	14
11	Discovery of a Selective, Covalent IRAK1 Inhibitor with Antiproliferative Activity in MYD88 Mutated B-Cell Lymphoma. ACS Medicinal Chemistry Letters, 2020, 11, 2238-2243.	2.8	11
12	Discovery of Covalent MKK4/7 Dual Inhibitor. Cell Chemical Biology, 2020, 27, 1553-1560.e8.	5.2	10
13	Glucose-dependent partitioning of arginine to the urea cycle protects β-cells from inflammation. Nature Metabolism, 2020, 2, 432-446.	11.9	27
14	Identification of a potent and selective covalent Pin1 inhibitor. Nature Chemical Biology, 2020, 16, 979-987.	8.0	40
15	Discovery of MFH290: A Potent and Highly Selective Covalent Inhibitor for Cyclin-Dependent Kinase 12/13. Journal of Medicinal Chemistry, 2020, 63, 6708-6726.	6.4	23
16	Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Scientific Reports, 2020, 10, 5324.	3.3	69
17	Development of a covalent inhibitor of gut bacterial bile salt hydrolases. Nature Chemical Biology, 2020, 16, 318-326.	8.0	59
18	Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Cell Chemical Biology, 2020, 27, 525-537.e6.	5.2	36

SCOTT B FICARRO

#	Article	IF	CITATIONS
19	Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway. Cancer Cell, 2020, 37, 104-122.e12.	16.8	267
20	Structure-Based Design of a Potent and Selective Covalent Inhibitor for SRC Kinase That Targets a P-Loop Cysteine. Journal of Medicinal Chemistry, 2020, 63, 1624-1641.	6.4	27
21	Rationally Designed Covalent BCL6 Inhibitor That Targets a Tyrosine Residue in the Homodimer Interface. ACS Medicinal Chemistry Letters, 2020, 11, 1269-1273.	2.8	22
22	Discovery and Structure–Activity Relationship Study of (<i>Z</i>)-5-Methylenethiazolidin-4-one Derivatives as Potent and Selective Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 4880-4895.	6.4	17
23	Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. Science, 2019, 365, .	12.6	233
24	Synthesis and structure activity relationships of a series of 4-amino-1H-pyrazoles as covalent inhibitors of CDK14. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1985-1993.	2.2	5
25	Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Cell Chemical Biology, 2019, 26, 792-803.e10.	5.2	103
26	In vitro assembly and proteomic analysis of RNA polymerase II complexes. Methods, 2019, 159-160, 96-104.	3.8	4
27	In vitro analysis of RNA polymerase II elongation complex dynamics. Genes and Development, 2019, 33, 578-589.	5.9	34
28	Leveraging Compound Promiscuity to Identify Targetable Cysteines within the Kinome. Cell Chemical Biology, 2019, 26, 818-829.e9.	5.2	43
29	Discovery of Covalent CDK14 Inhibitors with Pan-TAIRE Family Specificity. Cell Chemical Biology, 2019, 26, 804-817.e12.	5.2	19
30	Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature, 2019, 575, 545-550.	27.8	197
31	A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. Journal of the American Chemical Society, 2019, 141, 191-203.	13.7	65
32	SRPKIN-1: A Covalent SRPK1/2 Inhibitor that Potently Converts VEGF from Pro-angiogenic to Anti-angiogenic Isoform. Cell Chemical Biology, 2018, 25, 460-470.e6.	5.2	95
33	MEF2C Phosphorylation Is Required forÂChemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discovery, 2018, 8, 478-497.	9.4	59
34	Overcoming Resistance to the THZ Series of Covalent Transcriptional CDK Inhibitors. Cell Chemical Biology, 2018, 25, 135-142.e5.	5.2	58
35	Akt Kinase Activation Mechanisms Revealed Using Protein Semisynthesis. Cell, 2018, 174, 897-907.e14.	28.9	96
36	Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein. Cell Chemical Biology, 2018, 25, 1006-1016.e8.	5.2	68

SCOTT B FICARRO

#	Article	IF	CITATIONS
37	STK40 Is a Pseudokinase that Binds the E3ÂUbiquitin Ligase COP1. Structure, 2017, 25, 287-294.	3.3	37
38	A Sequentially Priming Phosphorylation Cascade Activates the Gliomagenic Transcription Factor Olig2. Cell Reports, 2017, 18, 3167-3177.	6.4	32
39	A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions. ACS Infectious Diseases, 2017, 3, 112-118.	3.8	12
40	Structure-guided development of covalent TAK1 inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 838-846.	3.0	28
41	<i>multiplierz</i> v2.0: A Python-based ecosystem for shared access and analysis of native mass spectrometry data. Proteomics, 2017, 17, 1700091.	2.2	40
42	Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C. Cell Chemical Biology, 2017, 24, 1005-1016.e3.	5.2	109
43	Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. Cell Reports, 2017, 21, 3317-3328.	6.4	68
44	Differential contribution of the mitochondrial translation pathway to the survival of diffuse large B-cell lymphoma subsets. Cell Death and Differentiation, 2017, 24, 251-262.	11.2	65
45	Structural and Biochemical Analyses Reveal the Mechanism of Glutathione S-Transferase Pi 1 Inhibition by the Anti-cancer Compound Piperlongumine. Journal of Biological Chemistry, 2017, 292, 112-120.	3.4	70
46	mzStudio: A Dynamic Digital Canvas for User-Driven Interrogation of Mass Spectrometry Data. Proteomes, 2017, 5, 20.	3.5	18
47	Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation. Genes and Development, 2017, 31, 2162-2174.	5.9	50
48	Leveraging Gas-Phase Fragmentation Pathways for Improved Identification and Selective Detection of Targets Modified by Covalent Probes. Analytical Chemistry, 2016, 88, 12248-12254.	6.5	31
49	Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nature Chemical Biology, 2016, 12, 876-884.	8.0	249
50	Phosphoproteomic profiling of mouse primary HSPCs reveals new regulators of HSPC mobilization. Blood, 2016, 128, 1465-1474.	1.4	19
51	LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell, 2016, 19, 66-80.	11.1	278
52	Direct Analysis of Phosphorylation Sites on the Rpb1 C-Terminal Domain of RNA Polymerase II. Molecular Cell, 2016, 61, 297-304.	9.7	98
53	The Cyclophilin A \hat{a} CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nature Medicine, 2015, 21, 572-580.	30.7	79
54	Development of small molecules targeting the pseudokinase Her3. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3382-3389.	2.2	53

SCOTT B FICARRO

#	Article	IF	CITATIONS
55	Development of Selective Covalent Janus Kinase 3 Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 6589-6606.	6.4	94
56	Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nature Structural and Molecular Biology, 2015, 22, 703-711.	8.2	72
57	Protected Amine Labels: A Versatile Molecular Scaffold for Multiplexed Nominal Mass and Sub-Da Isotopologue Quantitative Proteomic Reagents. Journal of the American Society for Mass Spectrometry, 2014, 25, 636-650.	2.8	6
58	Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells. Cell Stem Cell, 2014, 15, 92-101.	11.1	93
59	Identification of Kinase Inhibitor Targets in the Lung Cancer Microenvironment by Chemical and Phosphoproteomics. Molecular Cancer Therapeutics, 2014, 13, 2751-2762.	4.1	21
60	Pharmacological targeting of the pseudokinase Her3. Nature Chemical Biology, 2014, 10, 1006-1012.	8.0	161
61	PARP1-Driven Poly-ADP-Ribosylation Regulates BRCA1 Function in Homologous Recombination–Mediated DNA Repair. Cancer Discovery, 2014, 4, 1430-1447.	9.4	125
62	Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature, 2014, 511, 616-620.	27.8	698
63	In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8895-8900.	7.1	193
64	Intrinsic Selectivity of Notch 1 for Delta-like 4 Over Delta-like 1. Journal of Biological Chemistry, 2013, 288, 25477-25489.	3.4	110
65	Novel Small-Scale Phosphoproteomic Discovery Of Therapeutic Targets For Hematopoietic Stem and Progenitor Cell Mobilization. Blood, 2013, 122, 1183-1183.	1.4	0
66	Proteomic Analysis Demonstrates Activator- and Chromatin-specific Recruitment to Promoters. Journal of Biological Chemistry, 2012, 287, 35397-35408.	3.4	25
67	Novel Nano-Scale Phosphoproteomic Identification of Pathways Responsible for Hematopoietic Stem and Progenitor Cell Mobilization and Malignant Transformation. Blood, 2012, 120, 4085-4085.	1.4	0
68	Online Nanoflow Multidimensional Fractionation for High Efficiency Phosphopeptide Analysis. Molecular and Cellular Proteomics, 2011, 10, 0111.011064.	3.8	93
69	Magnetic Bead Processor for Rapid Evaluation and Optimization of Parameters for Phosphopeptide Enrichment. Analytical Chemistry, 2009, 81, 4566-4575.	6.5	133
70	Improved Electrospray Ionization Efficiency Compensates for Diminished Chromatographic Resolution and Enables Proteomics Analysis of Tyrosine Signaling in Embryonic Stem Cells. Analytical Chemistry, 2009, 81, 3440-3447.	6.5	100
71	Niobium(V) Oxide (Nb2O5): Application to Phosphoproteomics. Analytical Chemistry, 2008, 80, 4606-4613.	6.5	117