Andrew Camilli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3123861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a Monoclonal Antibody to a Vibriophage as a Proxy for Vibrio cholerae Detection. Infection and Immunity, 2022, 90, .	1.0	1
2	A Tail Fiber Protein and a Receptor-Binding Protein Mediate ICP2 Bacteriophage Interactions with Vibrio cholerae OmpU. Journal of Bacteriology, 2021, 203, e0014121.	1.0	13
3	A Tn-seq Screen of Streptococcus pneumoniae Uncovers DNA Repair as the Major Pathway for Desiccation Tolerance and Transmission. Infection and Immunity, 2021, 89, e0071320.	1.0	8
4	An Intranasal Vaccine Based on Outer Membrane Vesicles Against SARS-CoV-2. Frontiers in Microbiology, 2021, 12, 752739.	1.5	18
5	Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System. MSphere, 2020, 5, .	1.3	8
6	Prophage-Dependent Neighbor Predation Fosters Horizontal Gene Transfer by Natural Transformation. MSphere, 2020, 5, .	1.3	16
7	Expanding the repertoire of conservative site-specific recombination in Clostridioides difficile. Anaerobe, 2019, 60, 102073.	1.0	9
8	NusG prevents transcriptional invasion of H-NS-silenced genes. PLoS Genetics, 2019, 15, e1008425.	1.5	16
9	Niche adaptation limits bacteriophage predation of <i>Vibrio cholerae</i> in a nutrient-poor aquatic environment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1627-1632.	3.3	37
10	High-Throughput Analysis of Gene Function in the Bacterial Predator Bdellovibrio bacteriovorus. MBio, 2019, 10, .	1.8	35
11	Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 2019, 17, 441-448.	13.6	748
12	Vibrio cholerae residing in food vacuoles expelled by protozoa are more infectious in vivo. Nature Microbiology, 2019, 4, 2466-2474.	5.9	27
13	Lon Protease Has Multifaceted Biological Functions in <i>Acinetobacter baumannii</i> . Journal of Bacteriology, 2019, 201, .	1.0	29
14	Vibrio cholerae Outer Membrane Vesicles Inhibit Bacteriophage Infection. Journal of Bacteriology, 2018, 200, .	1.0	135
15	Nasopharyngeal Exposure to <i>Streptococcus pneumoniae</i> Induces Extended Age-Dependent Protection against Pulmonary Infection Mediated by Antibodies and CD138+ Cells. Journal of Immunology, 2018, 200, 3739-3751.	0.4	18
16	Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic <i>Escherichia coli</i> . MBio, 2018, 9, .	1.8	64
17	Vibrio cholerae motility exerts drag force to impede attack by the bacterial predator Bdellovibrio bacteriovorus. Nature Communications, 2018, 9, 4757.	5.8	27
18	Phenotypic and genomic analyses of bacteriophages targeting environmental and clinical CS3-expressing enterotoxigenic Escherichia coli (ETEC) strains. PLoS ONE, 2018, 13, e0209357.	1.1	8

#	Article	IF	CITATIONS
19	Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genetics, 2018, 14, e1007332.	1.5	41
20	Transposon Sequencing of Vibrio cholerae in theÂlnfant Rabbit Model of Cholera. Methods in Molecular Biology, 2018, 1839, 103-116.	0.4	4
21	cAMP Receptor Protein Controls Vibrio cholerae Gene Expression in Response to Host Colonization. MBio, 2018, 9, .	1.8	46
22	A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nature Communications, 2017, 8, 14187.	5.8	180
23	Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires. Applied and Environmental Microbiology, 2017, 83, .	1.4	88
24	Growth arrest and a persister state enable resistance to osmotic shock and facilitate dissemination of <i>Vibrio cholerae</i> . ISME Journal, 2017, 11, 2718-2728.	4.4	15
25	Immunity Provided by an Outer Membrane Vesicle Cholera Vaccine Is Due to O-Antigen-Specific Antibodies Inhibiting Bacterial Motility. Infection and Immunity, 2017, 85, .	1.0	43
26	Existence of a novel qepA variant in quinolone resistant Escherichia coli from aquatic habitats of Bangladesh. Gut Pathogens, 2017, 9, 58.	1.6	12
27	Colistin resistant Escherichia coli carrying mcr-1 in urban sludge samples: Dhaka, Bangladesh. Gut Pathogens, 2017, 9, 77.	1.6	25
28	Mechanisms of the evolutionary arms race between Vibrio cholerae and Vibriophage clinical isolates. International Microbiology, 2017, 20, 116-120.	1.1	13
29	Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti. International Journal of Environmental Research and Public Health, 2016, 13, 187.	1.2	13
30	Global Tnâ€seq analysis of carbohydrate utilization and vertebrate infectivity of <i>Borrelia burgdorferi</i> . Molecular Microbiology, 2016, 101, 1003-1023.	1.2	47
31	<scp><i>V</i></scp> <i>ibrio cholerae</i> phosphatases required for the utilization of nucleotides and extracellular <scp>DNA</scp> as phosphate sources. Molecular Microbiology, 2016, 99, 453-469.	1.2	36
32	ManLMN is a glucose transporter and central metabolic regulator in <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 2016, 102, 467-487.	1.2	22
33	Transposon-Sequencing Analysis Unveils Novel Genes Involved in the Generation of Persister Cells in Uropathogenic Escherichia coli. Antimicrobial Agents and Chemotherapy, 2016, 60, 6907-6910.	1.4	20
34	A comparative study of ChIP-seq sequencing library preparation methods. BMC Genomics, 2016, 17, 816.	1.2	25
35	Genomeâ€Wide Fitness and Genetic Interactions Determined by Tnâ€seq, a Highâ€Throughput Massively Parallel Sequencing Method for Microorganisms. Current Protocols in Microbiology, 2015, 36, 1E.3.1-1E.3.24.	6.5	44
36	Peptidoglycan Branched Stem Peptides Contribute to Streptococcus pneumoniae Virulence by Inhibiting Pneumolysin Release. PLoS Pathogens, 2015, 11, e1004996.	2.1	37

#	Article	IF	CITATIONS
37	Neutrophil IL-1β Processing Induced by Pneumolysin Is Mediated by the NLRP3/ASC Inflammasome and Caspase-1 Activation and Is Dependent on K+ Efflux. Journal of Immunology, 2015, 194, 1763-1775.	0.4	195
38	The α-Tocopherol Form of Vitamin E Reverses Age-Associated Susceptibility to <i>Streptococcus pneumoniae</i> Lung Infection by Modulating Pulmonary Neutrophil Recruitment. Journal of Immunology, 2015, 194, 1090-1099.	0.4	77
39	Genetic Basis of Persister Tolerance to Aminoglycosides in Escherichia coli. MBio, 2015, 6, .	1.8	127
40	Carbon catabolite repression by seryl phosphorylated <scp>HPr</scp> is essential to <scp><i>S</i></scp> <i>treptococcus pneumoniae</i> in carbohydrateâ€rich environments. Molecular Microbiology, 2015, 97, 360-380.	1.2	19
41	The VieB auxiliary protein negatively regulates the VieSA signal transduction system in Vibrio cholerae. BMC Microbiology, 2015, 15, 59.	1.3	19
42	Mutations in Pneumococcal <i>cpsE</i> Generated via <i>In Vitro</i> Serial Passaging Reveal a Potential Mechanism of Reduced Encapsulation Utilized by a Conjunctival Isolate. Journal of Bacteriology, 2015, 197, 1781-1791.	1.0	41
43	A globally distributed mobile genetic element inhibits natural transformation of <i>Vibrio cholerae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10485-10490.	3.3	58
44	Role of Cyclic Di-GMP in Vibrio cholerae Virulence. , 2014, , 291-303.		0
45	Identification of a Membrane-Bound Transcriptional Regulator That Links Chitin and Natural Competence in Vibrio cholerae. MBio, 2014, 5, e01028-13.	1.8	106
46	ldentification of <i>in vivo</i> regulators of the <scp><i>V</i></scp> <i>ibrio cholerae</i> â€ <scp><i>xds</i></scp> gene using a highâ€throughput genetic selection. Molecular Microbiology, 2014, 92, 302-315.	1.2	36
47	Genomeâ€Wide Fitness and Genetic Interactions Determined by Tnâ€seq, a Highâ€Throughput Massively Parallel Sequencing Method for Microorganisms. Current Protocols in Molecular Biology, 2014, 106, 7.16.1-24.	2.9	49
48	Genes Contributing to Staphylococcus aureus Fitness in Abscess- and Infection-Related Ecologies. MBio, 2014, 5, e01729-14.	1.8	130
49	The Core Promoter of the Capsule Operon of Streptococcus pneumoniae Is Necessary for Colonization and Invasive Disease. Infection and Immunity, 2014, 82, 694-705.	1.0	69
50	Genomic Analyses of Pneumococci from Children with Sickle Cell Disease Expose Host-Specific Bacterial Adaptations and Deficits in Current Interventions. Cell Host and Microbe, 2014, 15, 587-599.	5.1	57
51	Multiplex genome editing by natural transformation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8937-8942.	3.3	196
52	Evolutionary consequences of intra-patient phage predation on microbial populations. ELife, 2014, 3, e03497.	2.8	114
53	A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, 2013, 494, 489-491.	13.7	348
54	Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nature Reviews Microbiology, 2013, 11, 435-442.	13.6	428

#	Article	IF	CITATIONS
55	Gene Fitness Landscapes of Vibrio cholerae at Important Stages of Its Life Cycle. PLoS Pathogens, 2013, 9, e1003800.	2.1	212
56	Characterization of Undermethylated Sites in Vibrio cholerae. Journal of Bacteriology, 2013, 195, 2389-2399.	1.0	48
57	Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction. BioTechniques, 2013, 54, 25-34.	0.8	63
58	Vitamin E reverses ageâ€associated susceptibility to Streptococcus pneumoniae lung infection. FASEB Journal, 2013, 27, 357.5.	0.2	0
59	Immunization of Mice With Vibrio cholerae Outer-Membrane Vesicles Protects Against Hyperinfectious Challenge and Blocks Transmission. Journal of Infectious Diseases, 2012, 205, 412-421.	1.9	40
60	A fine scale phenotype–genotype virulence map of a bacterial pathogen. Genome Research, 2012, 22, 2541-2551.	2.4	224
61	Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics, 2012, 13, 578.	1.2	123
62	Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1. PLoS Pathogens, 2012, 8, e1002917.	2.1	138
63	<i>Vibrio cholerae</i> : lessons for mucosal vaccine design. Expert Review of Vaccines, 2011, 10, 79-94.	2.0	44
64	Extracellular nucleases and extracellular DNA play important roles in <i>Vibrio cholerae</i> biofilm formation. Molecular Microbiology, 2011, 82, 1015-1037.	1.2	183
65	Evidence of a Dominant Lineage of Vibrio cholerae-Specific Lytic Bacteriophages Shed by Cholera Patients over a 10-Year Period in Dhaka, Bangladesh. MBio, 2011, 2, e00334-10.	1.8	115
66	Streptococcus pneumoniae Is Desiccation Tolerant and Infectious upon Rehydration. MBio, 2011, 2, e00092-11.	1.8	54
67	A Genome-Wide Approach to Discovery of Small RNAs Involved in Regulation of Virulence in Vibrio cholerae. PLoS Pathogens, 2011, 7, e1002126.	2.1	57
68	PhoB regulates both environmental and virulence gene expression in <i>Vibrio cholerae</i> . Molecular Microbiology, 2010, 77, 1595-1605.	1.2	86
69	Mucosal Immunization with <i>Vibrio cholerae</i> Outer Membrane Vesicles Provides Maternal Protection Mediated by Antilipopolysaccharide Antibodies That Inhibit Bacterial Motility. Infection and Immunity, 2010, 78, 4402-4420.	1.0	90
70	Growth in a Biofilm Induces a Hyperinfectious Phenotype in <i>Vibrio cholerae</i> . Infection and Immunity, 2010, 78, 3560-3569.	1.0	171
71	A Novel Regulatory Protein Involved in Motility of <i>Vibrio cholerae</i> . Journal of Bacteriology, 2009, 191, 7027-7038.	1.0	53
72	PhoB Regulates Motility, Biofilms, and Cyclic di-GMP in <i>Vibrio cholerae</i> . Journal of Bacteriology, 2009, 191, 6632-6642.	1.0	76

#	Article	IF	CITATIONS
73	Characterization of <i>Vibrio cholerae</i> Outer Membrane Vesicles as a Candidate Vaccine for Cholera. Infection and Immunity, 2009, 77, 472-484.	1.0	115
74	Glycogen contributes to the environmental persistence and transmission of <i>Vibrio cholerae</i> . Molecular Microbiology, 2009, 72, 124-138.	1.2	81
75	Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nature Methods, 2009, 6, 767-772.	9.0	802
76	Cholera transmission: the host, pathogen and bacteriophage dynamic. Nature Reviews Microbiology, 2009, 7, 693-702.	13.6	496
77	A new <i>Vibrio cholerae</i> sRNA modulates colonization and affects release of outer membrane vesicles. Molecular Microbiology, 2008, 70, 100-111.	1.2	187
78	Immunization with <i>Vibrio cholerae</i> Outer Membrane Vesicles Induces Protective Immunity in Mice. Infection and Immunity, 2008, 76, 4554-4563.	1.0	167
79	Transmission of Vibrio cholerae Is Antagonized by Lytic Phage and Entry into the Aquatic Environment. PLoS Pathogens, 2008, 4, e1000187.	2.1	96
80	Isolation of <i>Streptococcus pneumoniae</i> Biofilm Mutants and Their Characterization during Nasopharyngeal Colonization. Infection and Immunity, 2008, 76, 5049-5061.	1.0	130
81	The <i>Vibrio cholerae</i> Hybrid Sensor Kinase VieS Contributes to Motility and Biofilm Regulation by Altering the Cyclic Diguanylate Level. Journal of Bacteriology, 2008, 190, 6439-6447.	1.0	43
82	Role of Cyclic Di-GMP during El Tor Biotype <i>Vibrio cholerae</i> Infection: Characterization of the In Vivo-Induced Cyclic Di-GMP Phosphodiesterase CdpA. Infection and Immunity, 2008, 76, 1617-1627.	1.0	96
83	Complexity of rice-water stool from patients with <i>Vibrio cholerae</i> plays a role in the transmission of infectious diarrhea. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19091-19096.	3.3	62
84	An <i>in vivo</i> expression technology screen for <i>Vibrio cholerae</i> genes expressed in human volunteers. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18229-18234.	3.3	79
85	Genes Induced Late in Infection Increase Fitness of Vibrio cholerae after Release into the Environment. Cell Host and Microbe, 2007, 2, 264-277.	5.1	168
86	Sucrose metabolism contributes to <i>in vivo</i> fitness of <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 2007, 66, 1-13.	1.2	78
87	Bacterial Small-Molecule Signaling Pathways. Science, 2006, 311, 1113-1116.	6.0	868
88	Cholera stool bacteria repress chemotaxis to increase infectivity. Molecular Microbiology, 2006, 60, 417-426.	1.2	75
89	Contribution of Hemagglutinin/Protease and Motility to the Pathogenesis of El Tor Biotype Cholera. Infection and Immunity, 2006, 74, 2072-2079.	1.0	88
90	Transcriptome and Phenotypic Responses of Vibrio cholerae to Increased Cyclic di-GMP Level. Journal of Bacteriology, 2006, 188, 3600-3613.	1.0	189

#	Article	IF	CITATIONS
91	Differences in Gene Expression between the Classical and El Tor Biotypes of Vibrio cholerae O1. Infection and Immunity, 2006, 74, 3633-3642.	1.0	72
92	The EAL Domain Protein VieA Is a Cyclic Diguanylate Phosphodiesterase. Journal of Biological Chemistry, 2005, 280, 33324-33330.	1.6	253
93	Catabolite Control Protein A (CcpA) Contributes to Virulence and Regulation of Sugar Metabolism in Streptococcus pneumoniae. Journal of Bacteriology, 2005, 187, 8340-8349.	1.0	170
94	Cyclic Diguanylate Regulates Vibrio cholerae Virulence Gene Expression. Infection and Immunity, 2005, 73, 5873-5882.	1.0	232
95	Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proceedings of the United States of America, 2004, 101, 5018-5023.	3.3	186
96	Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Molecular Microbiology, 2004, 53, 857-869.	1.2	449
97	From nose to lung: the regulation behind Streptococcus pneumoniae virulence factors. Molecular Microbiology, 2003, 50, 1103-1110.	1.2	77
98	Transcriptional Regulation in the Streptococcus pneumoniae rlrA Pathogenicity Islet by RlrA. Journal of Bacteriology, 2003, 185, 413-421.	1.0	100
99	MgrA, an Orthologue of Mga, Acts as a Transcriptional Repressor of the Genes within the rlrA Pathogenicity Islet in Streptococcus pneumoniae. Journal of Bacteriology, 2003, 185, 6640-6647.	1.0	57
100	The Vibrio cholerae vieSAB Locus Encodes a Pathway Contributing to Cholera Toxin Production. Journal of Bacteriology, 2002, 184, 4104-4113.	1.0	60
101	Acid tolerance of gastrointestinal pathogens. Current Opinion in Microbiology, 2002, 5, 51-55.	2.3	160
102	Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Molecular Microbiology, 2002, 43, 1471-1491.	1.2	210
103	Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Molecular Microbiology, 2002, 45, 1389-1406.	1.2	474
104	Host-induced epidemic spread of the cholera bacterium. Nature, 2002, 417, 642-645.	13.7	482
105	Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Molecular Microbiology, 2002, 45, 1389-1406.	1.2	44
106	Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Molecular Microbiology, 2002, 45, 1389-406.	1.2	472
107	The ToxR-Mediated Organic Acid Tolerance Response of Vibrio cholerae Requires OmpU. Journal of Bacteriology, 2001, 183, 2746-2754.	1.0	95
108	DETECTION AND ANALYSIS OF GENE EXPRESSION DURING INFECTION BY <i>IN VIVO</i> EXPRESSION TECHNOLOGY. , 2001, , .		1

#	Article	IF	CITATIONS
109	Regulation of Vibrio cholerae Genes Required for Acid Tolerance by a Member of the "ToxR-Like―Family of Transcriptional Regulators. Journal of Bacteriology, 2000, 182, 5342-5350.	1.0	102
110	The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Molecular Microbiology, 1999, 34, 836-849.	1.2	169
111	Transformation of a type 4 encapsulated strain ofStreptococcus pneumoniae. FEMS Microbiology Letters, 1999, 172, 131-135.	0.7	132
112	Regulation and Temporal Expression Patterns of Vibrio cholerae Virulence Genes during Infection. Cell, 1999, 99, 625-634.	13.5	281
113	<i>>Vibrio cholerae</i> Intestinal Population Dynamics in the Suckling Mouse Model of Infection. Infection and Immunity, 1999, 67, 3733-3739.	1.0	96
114	Nucleotide Sequence and Spatiotemporal Expression of the Vibrio cholerae vieSAB Genes during Infection. Journal of Bacteriology, 1998, 180, 2298-2305.	1.0	58
115	Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Molecular Microbiology, 1995, 18, 671-683.	1.2	268
116	Transformation of a type 4 encapsulated strain of Streptococcus pneumoniae. , 0, .		3
117	Regulating the Transition of <i>Vibrio cholerae</i> Out of the Host. , 0, , 566-585.		0