Jie An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3123573/publications.pdf

Version: 2024-02-01

28 papers	1,104 citations	18 h-index	501196 28 g-index
28	28	28	929
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Methanol as the C \langle sub \rangle 1 \langle sub \rangle source: redox coupling of nitrobenzenes and alcohols for the synthesis of benzimidazoles. Green Chemistry, 2022, 24, 748-753.	9.0	10
2	A Reductive Deuteration Approach to the Efficient Synthesis of Deuterated Polymers. Synlett, 2022, 33, 771-776.	1.8	1
3	Pentafluorophenyl Group as Activating Group: Synthesis of αâ€Deuterio Carboxylic Acid Derivatives via Et ₃ N Catalyzed H/D Exchange. Advanced Synthesis and Catalysis, 2022, 364, 2184-2189.	4. 3	2
4	Reductive Deuteration of Aromatic Esters for the Synthesis of $\hat{l}_{\pm},\hat{l}_{\pm}$ -Dideuterio Benzyl Alcohols Using D2O as Deuterium Source. Synlett, 2021, 32, 51-56.	1.8	19
5	Protocol for Palladium/N-Heterocyclic Carbene-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides by N–C(O) Activation. Synthesis, 2021, 53, 682-687.	2.3	5
6	Acyl fluorides as direct precursors to fluoride ketyl radicals: reductive deuteration using Sml ₂ and D ₂ O. Chemical Communications, 2021, 57, 5195-5198.	4.1	11
7	Design, synthesis and antifungal/ <scp>antiâ€oomycete</scp> activity of pyrazolyl oxime ethers as novel potential succinate dehydrogenase inhibitors. Pest Management Science, 2021, 77, 3910-3920.	3.4	21
8	Synthesis of \hat{l}_{\pm} -Deuterioalcohols by Single-Electron Umpolung Reductive Deuteration of Carbonyls Using D2O as Deuterium Source. Synlett, 2021, 32, 1241-1245.	1.8	6
9	Construction of C-C bonds via photoreductive coupling of ketones and aldehydes in the metal-organic-framework MFM-300(Cr). Nature Communications, 2021, 12, 3583.	12.8	35
10	Tandem H/D Exchange-SET Reductive Deuteration Strategy for the Synthesis of \hat{l}_{\pm},\hat{l}^2 -Deuterated Amines Using D ₂ O. Journal of Organic Chemistry, 2021, 86, 11862-11870.	3.2	7
11	Synthesis of α-Deuterated Primary Amines <i>via</i> Reductive Deuteration of Oximes Using D ₂ 0 as a Deuterium Source. Journal of Organic Chemistry, 2021, 86, 2907-2916.	3.2	15
12	Pentafluorophenyl Esters: Highly Chemoselective Ketyl Precursors for the Synthesis of α,α-Dideuterio Alcohols Using Sml ₂ and D ₂ O as a Deuterium Source. Organic Letters, 2020, 22, 1249-1253.	4.6	20
13	2â€Methyltetrahydrofuran (2â€MeTHF): A Green Solvent for Pdâ^'NHCâ€Catalyzed Amide and Ester Suzukiâ€Miyaura Crossâ€Coupling by Nâ^'C/Oâ^'C Cleavage. Advanced Synthesis and Catalysis, 2019, 361, 5654-5660.	4.3	37
14	Reductive Cleavage of Unactivated Carbon–Cyano Bonds under Ammonia-Free Birch Conditions. Journal of Organic Chemistry, 2019, 84, 15827-15833.	3.2	18
15	Reductive Deuteration of Nitriles Using D ₂ O as a Deuterium Source. Journal of Organic Chemistry, 2019, 84, 15098-15105.	3.2	20
16	Selective C-N Ïf Bond Cleavage in Azetidinyl Amides under Transition Metal-Free Conditions. Molecules, 2019, 24, 459.	3.8	10
17	A Practical and Chemoselective Ammonia-Free Birch Reduction. Organic Letters, 2018, 20, 3439-3442.	4.6	74
18	Transition-Metal-Free, Selective Reductive Deuteration of Terminal Alkynes with Sodium Dispersions and EtOD- <i>d</i> 1. Organic Letters, 2018, 20, 3010-3013.	4.6	34

#	Article	IF	CITATION
19	Reduction and Reductive Deuteration of Tertiary Amides Mediated by Sodium Dispersions with Distinct Proton Donor-Dependent Chemoselectivity. Journal of Organic Chemistry, 2018, 83, 6006-6014.	3.2	39
20	Reductive Deuteration of Nitriles: The Synthesis of $\hat{l}\pm,\hat{l}\pm$ -Dideuterio Amines by Sodium-Mediated Electron Transfer Reactions. Journal of Organic Chemistry, 2018, 83, 12269-12274.	3.2	31
21	A selective and cost-effective method for the reductive deuteration of activated alkenes. Tetrahedron Letters, 2017, 58, 2757-2760.	1.4	27
22	Development of a Modified Bouveault–Blanc Reduction for the Selective Synthesis of α,α-Dideuterio Alcohols. Journal of Organic Chemistry, 2017, 82, 1285-1290.	3.2	33
23	Suzuki–Miyaura cross-coupling of amides and esters at room temperature: correlation with barriers to rotation around C–N and C–O bonds. Chemical Science, 2017, 8, 6525-6530.	7.4	148
24	General Method for the Suzuki–Miyaura Cross-Coupling of Primary Amide-Derived Electrophiles Enabled by [Pd(NHC)(cin)Cl] at Room Temperature. Organic Letters, 2017, 19, 6510-6513.	4.6	60
25	Pd-PEPPSI: Pd-NHC Precatalyst for Suzuki–Miyaura Cross-Coupling Reactions of Amides. Journal of Organic Chemistry, 2017, 82, 6638-6646.	3.2	102
26	Evaluating a Sodium Dispersion Reagent for the Bouveault–Blanc Reduction of Esters. Journal of Organic Chemistry, 2014, 79, 6743-6747.	3.2	25
27	Catalytic Phosphorus(V)-Mediated Nucleophilic Substitution Reactions: Development of a Catalytic Appel Reaction. Journal of Organic Chemistry, 2011, 76, 6749-6767.	3.2	169
28	Phosphine oxide-catalysed chlorination reactions of alcohols under Appel conditions. Chemical Communications, 2010, 46, 3025.	4.1	125