Zinfer Ismagilov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3123536/publications.pdf

Version: 2024-02-01

436 papers 6,825 citations

94269 37 h-index 102304 66 g-index

483 all docs 483 docs citations

times ranked

483

6420 citing authors

#	Article	IF	Citations
1	Preparation and modulation of Cu-BTC-(n)Br/MCFs with water stability and its application for CO2 capture. Journal of Environmental Chemical Engineering, 2022, 10, 107564.	3.3	1
2	Humic and Lipid Components Derived from Lignite. Coke and Chemistry, 2021, 64, 31-36.	0.0	0
3	The optimization of preparation mode of metal-carbon catalysts for oxidative desulfurization of diesel fractions. Journal of Physics: Conference Series, 2021, 1749, 012022.	0.3	2
4	Dependence of the heat of combustion of coals on their degree of metamorphism. Journal of Physics: Conference Series, 2021, 1749, 012002.	0.3	0
5	Depleted Uranium Compounds and Prospects for Their Use in Catalysis. Chemistry for Sustainable Development, 2021, 29, 291-310.	0.0	O
6	Pilot tests of low-temperature catalytic reduction of sulfur dioxide in realistic conditions of sulfur recovery unit at copper plant of Polar Division of PSC "Norilsk Nickel― Journal of Physics: Conference Series, 2021, 1749, 012028.	0.3	0
7	Study of bitumoids extracted from O-alkylated brown coal. Journal of Physics: Conference Series, 2021, 1749, 012029.	0.3	O
8	Comparative study of demineralized coals by IR spectroscopy. Journal of Physics: Conference Series, 2021, 1749, 012001.	0.3	0
9	Basic technologies of direct catalytic oxidation of H2S to sulfur. Journal of Physics: Conference Series, 2021, 1749, 012027.	0.3	1
10	Study of the molecular structure of hexane-insoluble asphaltenes in coal tar pitch. Journal of Physics: Conference Series, 2021, 1749, 012032.	0.3	0
11	Investigation of the structural characteristics of vitrinites of some coals of the Kuznetsk Basin. Journal of Physics: Conference Series, 2021, 1749, 012015.	0.3	O
12	Physicochemical properties of microcomponents of the Kuznetsk Basin coals. Journal of Physics: Conference Series, 2021, 1749, 012003.	0.3	0
13	Study of the kinetic dependences of the glow and determination of the threshold characteristics of ignition of coals with different stages of metamorphism under the action of microsecond laser pulses. Journal of Physics: Conference Series, 2021, 1749, 012016.	0.3	O
14	Study of the chemical and technological properties of long-flame, long-flame-gas and gas coals of the Kuznetsk Basin. Journal of Physics: Conference Series, 2021, 1749, 012004.	0.3	0
15	Comparative study of coal samples from different deposits of Kuzbass. Journal of Physics: Conference Series, 2021, 1749, 012007.	0.3	1
16	Determination of the parameters of the porous structure of carbon sorbents based on Kuzbass fossil coals by the method of low-temperature nitrogen adsorption. Journal of Physics: Conference Series, 2021, 1749, 012020.	0.3	1
17	Study of the features of brown coal by pétrographie analysis. Journal of Physics: Conference Series, 2021, 1749, 012031.	0.3	1
18	Study Of Fossil Coals In The Kuznetsk Basin By Epr Spectroscopy. Journal of Physics: Conference Series, 2021, 1749, 012018.	0.3	0

#	Article	IF	CITATIONS
19	Adsorption method for determining the texture characteristics of Kuzbass fossil coals of the metamorphism series. Journal of Physics: Conference Series, 2021, 1749, 012019.	0.3	2
20	Sorption methods for capturing carbon dioxide by various sorbents. Journal of Physics: Conference Series, 2021, 1749, 012026.	0.3	0
21	Co-processing of Bituminous Coal with Heavy Hydrocarbon Fractions of Coal and Petroleum Origins into Pitch-Like Products. Chemistry for Sustainable Development, 2021, 29, 213-223.	0.0	0
22	Bi-reforming of methane: thermodynamic equilibrium analysis and selection of preferable reaction conditions. Journal of Physics: Conference Series, 2021, 1749, 012023.	0.3	9
23	Adsorption equilibrium and kinetics of CO2 on mesocellular foams modified HKUST-1: Experiment and simulation. Journal of CO2 Utilization, 2021, 44, 101415.	3.3	18
24	Capillary microreactor with PdZn/(Ti, Ce)O2 coating for selective hydrogenation of 2-methyl-3-butyn-2-ol. Chemical Engineering and Processing: Process Intensification, 2021, 159, 108240.	1.8	6
25	Effect of preparation method on the activity of bimetallic Ni-Co/Al2O3 catalysts for dry reforming of methane. Chemical Papers, 2021, 75, 2765-2774.	1.0	16
26	Thermal Dissolution of Coals of the Metamorphism Series in the Anthracene Fraction of Coking Tar: An Analysis of Correlations with the Chemical and Technological Properties of Coals. Solid Fuel Chemistry, 2021, 55, 69-77.	0.2	1
27	Formation and decomposition of methane hydrate in pores of \hat{I}^3 -Al2O3 \hat{D}_{j} , Al2O3: The dependence of water to hydrate transformation degree on pressure and temperature. Journal of Molecular Liquids, 2021, 328, 115486.	2.3	4
28	The ammonia storage and ammonia species reactivity within Cu-ZSM-5 with different copper electronic states. Applied Catalysis A: General, 2021, 615, 118054.	2.2	11
29	Morphology and Electrical Capacitance Characteristics of Nanostructured MnxOy/MWCNT Composites. Inorganic Materials, 2021, 57, 487-497.	0.2	1
30	EFFECT OF STRUCTURE AND SURFACE STATE OF NITROGEN DOPED CARBON NANOTUBES ON THEIR FUNCTIONAL AND CATALYTIC PROPERTIES. Journal of Structural Chemistry, 2021, 62, 771-781.	0.3	4
31	Ignition of Coals by Laser Pulses in the Free-Running Mode. Solid Fuel Chemistry, 2021, 55, 194-199.	0.2	0
32	Pronounced therapeutic potential of oligonucleotides fixed on inorganic nanoparticles against highly pathogenic H5N1 influenza A virus in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162, 92-98.	2.0	10
33	Ventilation-Associated Particulate Matter Is a Potential Reservoir of Multidrug-Resistant Organisms in Health Facilities. Life, 2021, 11, 639.	1.1	4
34	Effect of preparation modes on the properties of cobalt-containing honeycomb monolithic catalysts modified by rare-earth metal oxides. Materials Today Communications, 2021, 27, 102203.	0.9	2
35	Dependence of the Biological Activity of Brown Coal Humic Acids on the Concentrations of Macro and Trace Elements. Solid Fuel Chemistry, 2021, 55, 223-228.	0.2	1
36	A novel source of hospital microorganisms in healthcare settings. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2021, 98, 266-275.	0.3	2

#	Article	IF	CITATIONS
37	Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion. Energies, 2021, 14, 5176.	1.6	14
38	Effect of Neodymium Laser Pulses of Nanosecond Duration on Brown Coal. Journal of Applied Spectroscopy, 2021, 88, 761-764.	0.3	5
39	Multiwalled Carbon Nanotubes: Matrix Nanostructured Composites as Electrode Materials for Supercapacitors. Energy Technology, 2021, 9, 2100449.	1.8	3
40	Direct Selective Oxidation of Hydrogen Sulfide: Laboratory, Pilot and Industrial Tests. Catalysts, 2021, 11, 1109.	1.6	11
41	Study of the structure and morphology of carbon sorbents. Journal of Physics: Conference Series, 2021, 1749, 012021.	0.3	0
42	Study of inertinite components by IR spectroscopy. Journal of Physics: Conference Series, 2021, 1749, 012005.	0.3	0
43	Methods and approaches to the determination of the carbon-containing dust concentrations in the atmospheric air during coal mining and processing. Journal of Physics: Conference Series, 2021, 1749, 012035.	0.3	0
44	Development of catalysts for the hydrogenation of levulinic acid to gamma-valerolactone in the framework of the problem of cellulose conversion into valuable chemicals. Journal of Physics: Conference Series, 2021, 1749, 012008.	0.3	0
45	Glow of a coal flame during exposure to microsecond laser pulses with different energy densities. Journal of Physics: Conference Series, 2021, 1749, 012017.	0.3	0
46	Modification of carbon sorbents by ozonation. Journal of Physics: Conference Series, 2021, 1749, 012006.	0.3	0
47	Study of the textural characteristics of carbon sorbents prepared by alkaline activation. Journal of Physics: Conference Series, 2021, 1749, 012024.	0.3	0
48	Study of coke by X-ray structural analysis and scanning electron microscopy. Journal of Physics: Conference Series, 2021, 1749, 012014.	0.3	4
49	Application of Catalytic Technologies for Power Plants Based on High-Temperature Fuel Cells. Chemistry for Sustainable Development, 2021, 29, 317-324.	0.0	0
50	Catalytic Processes for the Treatment of Mixed Organic Waste Containing Radionuclides. Chemistry for Sustainable Development, 2021, 29, 280-290.	0.0	1
51	Ultrasonication as a Method for Increasing the Yield of Bitumoids in the O-Alkylation of Brown Coal. Solid Fuel Chemistry, 2021, 55, 312-320.	0.2	4
52	Effective Inhibition of Newly Emerged A/H7N9 Virus with Oligonucleotides Targeted to Conserved Regions of the Virus Genome. Nucleic Acid Therapeutics, 2021, 31, 436-442.	2.0	0
53	Calciprotein Particles Link Disturbed Mineral Homeostasis with Cardiovascular Disease by Causing Endothelial Dysfunction and Vascular Inflammation. International Journal of Molecular Sciences, 2021, 22, 12458.	1.8	7
54	Investigation of the Correlation between the Energy Threshold of Laser Ignition of Coals and the Degree of Their Aromaticity. Chemistry for Sustainable Development, 2021, 29, 576-581.	0.0	0

#	Article	IF	CITATIONS
55	Investigation of Sapropelite Coals by Means of NMR Spectroscopy. Chemistry for Sustainable Development, 2021, 29, 604-610.	0.0	0
56	Preparation of Bimetallic Oxide Catalysts on Carbon Supports: The Effect of the Support on the Stability of Catalysts to Thermal Decomposition. Chemistry for Sustainable Development, 2021, 29, 582-588.	0.0	O
57	Biological Activity of Humic Preparations Containing Macroand Microelements. Chemistry for Sustainable Development, 2021, 29, 517-524.	0.0	O
58	Study of the Granulometric and Morphological Composition of Coal Powders. Chemistry for Sustainable Development, 2021, 29, 525-535.	0.0	1
59	Investigation of the Effect of the Method of Extraction Treatment on the Yield and Composition of Brown-Coal Bitumen. Chemistry for Sustainable Development, 2021, 29, 621-628.	0.0	O
60	Synthesis and Investigation of New Hybrid Materials Based on Carbon Nanofibres and Solid Structured Carriers. Chemistry for Sustainable Development, 2021, 29, 611-620.	0.0	0
61	Constructing Co@N-doped graphene shell catalyst via Mott-Schottky effect for selective hydrogenation of 5-hydroxylmethylfurfural. Applied Catalysis B: Environmental, 2020, 263, 118339.	10.8	70
62	Decomposition of carbon dioxide hydrate in the samples of natural coal with different degrees of metamorphism. Chinese Journal of Chemical Engineering, 2020, 28, 492-501.	1.7	3
63	Hydrogen production through autothermal reforming of CH4: Efficiency and action mode of noble (M) Tj ETQq1 I catalysts. International Journal of Hydrogen Energy, 2020, 45, 33352-33369.	0.784314 3.8	ł rgBT /Ovei 25
64	Sorption of Metal Cations by Lignite and Humic Acids. Coke and Chemistry, 2020, 63, 142-148.	0.0	2
65	Biological Activity of Native and Modified Humic Acids. Solid Fuel Chemistry, 2020, 54, 191-195.	0.2	3
66	Determining the Vitrinite Reflectance of Coal from Its Fuel Ratio. Coke and Chemistry, 2020, 63, 219-222.	0.0	1
67	Effect of the Conditions of Solution Combustion Synthesis on the Properties of Monolithic Pt–MnOx Catalysts for Deep Oxidation of Hydrocarbons. Kinetics and Catalysis, 2020, 61, 809-823.	0.3	3
68	Ignition of Different Metamorphic Grade Coals by Free-Running Laser Pulses. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 429-435.	0.2	14
69	X-Ray Structural Analysis of Vitrinites in Coal at Different Metamorphic Stages. Coke and Chemistry, 2020, 63, 57-62.	0.0	8
70	Laser Ignition and Flame Temperature for Low-Density Mixtures of Lignite Coal and Pentaerythritol Tetranitrate (Petn). Journal of Applied Spectroscopy, 2020, 87, 41-45.	0.3	1
71			

#	Article	IF	Citations
73	Effect of the O-Alkylation of Brown Coal with n-Butanol on the Yield and Composition of Bitumoids. Solid Fuel Chemistry, 2020, 54, 219-227.	0.2	4
74	Investigating Coal's Inertinite Components by IR and Raman Spectroscopy. Coke and Chemistry, 2020, 63, 405-410.	0.0	4
75	The Ignition Energy Characteristics and Glow Kinetics of the Flames of Dispersed Coal Particles of Different Ranks under the Action of Laser Pulses. Chemistry for Sustainable Development, 2020, , .	0.0	5
76	Study of Nanostructured TiO ₂ Rutile with Hierarchical 3D-Architecture. Effect of the Synthesis and Calcinations Temperature. Journal of Nanoscience and Nanotechnology, 2020, 20, 1303-1314.	0.9	1
77	Influence of the Density of PETN–Coal Composites on the Threshold Characteristics of Explosive Decomposition in Laser Initiation. Combustion, Explosion and Shock Waves, 2020, 56, 231-236.	0.3	1
78	The Development of Metal-Carbon Catalysts for Oxidative Desulfurization of Diesel Fractions. Eurasian Chemico-Technological Journal, 2020, 22, 81.	0.3	3
79	IR Spectroscopy of Sapropelic Coal. Coke and Chemistry, 2020, 63, 315-319.	0.0	0
80	Effect of Cobalt Oxide Content on the Activity of NiO-Co2O3 \hat{l}^3 -Al2O3 Catalyst in the Reaction of Dry Reforming of Methane to Synthesis Gas. Eurasian Chemico-Technological Journal, 2020, 22, 187.	0.3	4
81	Glow Spectral Characteristics of the Hard Coal Particles Surface during the Action of Laser Pulses in the Free Generation Mode. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 2008-2014.	0.2	9
82	Preparation and Properties of Carbon Nanotubes with Deposited Bimetal Oxide Nanoparticles. Chemistry for Sustainable Development, 2020, , .	0.0	1
83	Development of Supported Ni Catalysts for Autothermal Reforming of Methane. Chemistry for Sustainable Development, 2020, , .	0.0	3
84	Investigation of the Dependence of Biological Activity on the Structural Parameters of Native and Modified Humic Acids from Brown Coal. Chemistry for Sustainable Development, 2020, , .	0.0	1
85	Investigation of the Laser Radiation Effects on Lignite with the Products Analysis by Mass Spectrometry. Eurasian Chemico-Technological Journal, 2020, 22, 3.	0.3	1
86	Comparative Analysis of Physicochemical Properties of Rutile TiO2 with Hierarchical 3D Architecture Prepared by Liquid Hydrolysis of TiCl4 and Hydrothermal Method. Eurasian Chemico-Technological Journal, 2020, 22, 165.	0.3	0
87	Oxidative Destruction of Raw-Benzene Components. Coke and Chemistry, 2020, 63, 438-442.	0.0	1
88	Pyrolysis of Lignite under the Laser Radiation Exposure. , 2020, , .		0
89	Spectral-kinetic Characteristics Glow of Fat Coal at Different Stages of Laser Ignition., 2020,,.		0
90	Effect of Pd- precursor and support acid properties on the Pd electronic state and the hydrodesulfurization activity of Pd-zeolite catalysts. Catalysis Today, 2019, 323, 257-270.	2.2	19

#	Article	IF	Citations
91	Hydrogen production through hydrocarbon fuel reforming processes over Ni based catalysts. Catalysis Today, 2019, 323, 166-182.	2.2	54
92	Beneficial role of the nitrogen-doped carbon nanotubes in the synthesis of the active palladium supported catalyst. Diamond and Related Materials, 2019, 98, 107484.	1.8	11
93	ESR Analysis of Industrial Needle-Coke Samples. Coke and Chemistry, 2019, 62, 89-94.	0.0	3
94	Pt–Pd/MnOx–Al2O3 Oxidation Catalysts: Prospects of Application for Control of the Soot Emission with Diesel Exhaust Gases. Kinetics and Catalysis, 2019, 60, 453-464.	0.3	8
95	Optimal Parameters for the Production of Humic Acids from Brown Coals with Specific Structural-Group Composition. Solid Fuel Chemistry, 2019, 53, 253-261.	0.2	12
96	Formation and Properties of Ni–Ce–La–O Catalysts of Reforming. Kinetics and Catalysis, 2019, 60, 496-507.	0.3	8
97	Structural Analysis of Needle Coke. Coke and Chemistry, 2019, 62, 135-142.	0.0	19
98	Structural Defects and the Demineralization of Kuznetsk Basin Coal: Data from Raman Spectroscopy. Coke and Chemistry, 2019, 62, 169-173.	0.0	8
99	Development, Synthesis, and Study of Nanomaterials of Titania Doped by Zirconium for Selective Hydrogenation of 2-Methyl-3-Butyn-2-ol in a Microcapillary Reactor. Kinetics and Catalysis, 2019, 60, 474-483.	0.3	5
100	Geochemistry and Catagenetic Transformations of Kerogen from the Bazhenov Horizon. Geochemistry International, 2019, 57, 621-634.	0.2	15
101	Structural-Group Composition and Biological Activity of Humic Acids Obtained from Brown Coals of Russia and Mongolia. Solid Fuel Chemistry, 2019, 53, 145-151.	0.2	12
102	Effect of Glycine Addition on Physicochemical and Catalytic Properties of Mn, Mn–La and Mn–Ce Monolithic Catalysts Prepared by Solution Combustion Synthesis. Catalysis Letters, 2019, 149, 2535-2551.	1.4	8
103	Effect of Preparation Methods on the Physicochemical and Functional Properties of Ni/CeO2 Catalysts. Kinetics and Catalysis, 2019, 60, 221-230.	0.3	17
104	Phase transformations in Cd–Ni nanostructured system at elevated temperatures. Russian Chemical Bulletin, 2019, 68, 17-23.	0.4	2
105	Sorption of Cationic and Anionic Pollutants by Derivatives of Kuznetsk Basin Coal. Coke and Chemistry, 2019, 62, 365-370.	0.0	3
106	Ash Composition of Lignite. Coke and Chemistry, 2019, 62, 493-497.	0.0	1
107	Morphological, Structural, and Catalytic Properties of Pd–CeO2/Al2O3 Compositions and Thereof Coatings in the Oxidation of Methane. Catalysis in Industry, 2019, 11, 323-334.	0.3	0
108	Physicochemical and Sorption Properties of Natural Coal Samples with Various Degrees of Metamorphism. Russian Journal of Applied Chemistry, 2019, 92, 1410-1421.	0.1	10

#	Article	IF	CITATIONS
109	Sorption of Organic Compounds by Carbon Sorbents from Kuzbass Coals. Coke and Chemistry, 2019, 62, 240-244.	0.0	8
110	Raman Characteristics of Kuznetsk Basin Coal and Coal-Based Sorbents. Coke and Chemistry, 2019, 62, 379-384.	0.0	8
111	Effects of preparation mode and doping on the genesis and properties of Ni/Ce1-xMxOy nanocrystallites (M = Gd, La, Mg) for catalytic applications. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	18
112	Control of the NO–NH3 SCR Behavior of Cu-ZSM-5 by Variation of the Electronic State of Copper. Topics in Catalysis, 2019, 62, 179-191.	1.3	9
113	Uranium oxide catalysts: environmental applications for treatment of chlorinated organic waste from nuclear industry. Environmental Technology (United Kingdom), 2019, 40, 1881-1889.	1.2	14
114	Study of the Biological Activity of Humine Substances for the Creation of Preparations against Desertification. Chemistry for Sustainable Development, 2019, , .	0.0	2
115	Ignition of Different Marks of Coal by Laser Pulses in the Free-Running Mod. Chemistry for Sustainable Development, 2019, , .	0.0	6
116	Coal-Tar Pitch Asphaltene Powders as a Precursor for the Production of Carbon Graphite Nanostructured Materials. Chemistry for Sustainable Development, 2019, , .	0.0	1
117	Investigation of the Effect of Grinding Parameters of Brown Coal on the Yield and Structural Group Composition of Humic Acids. Chemistry for Sustainable Development, 2019, , .	0.0	2
118	MORPHOLOGICAL AND CHEMICAL CHARACTERIZATION OF MAGNESIUM PHOSPHATE AND CALCIUM PHOSPHATE BIONS. Siberian Medical Review, 2019, 3, 34-42.	0.1	0
119	Particulate Matter in a Hospital Environment: as Potential Reservoir for Hospital Strains. Epidemiologiya I Vaktsinoprofilaktika, 2019, 18, 82-92.	0.2	3
120	Preparation of Carbon Nanotubes with Supported Metal Oxide Nanoparticles: Effect of Metal Precursor on Thermal Decomposition Behavior of the Materials. Eurasian Chemico-Technological Journal, 2019, 21, 303.	0.3	5
121	Effect of Acid Treatment on the Functionalization of Surface, Structural and Textural Properties of Carbon Nanotubes Taunit. Eurasian Chemico-Technological Journal, 2019, 21, 291.	0.3	8
122	Effect of \ddot{i} ‡-alumina addition on H 2 S oxidation properties of pure and modified \hat{i}^3 -alumina. Chinese Journal of Catalysis, 2018, 39, 258-274.	6.9	12
123	Hydrogen abstraction from methane on cristobalite supported W and Mn oxo complexes: A DFT study. Molecular Catalysis, 2018, 445, 307-315.	1.0	15
124	The formation of carbon dioxide hydrate from water sorbed by coals. Fuel, 2018, 228, 123-131.	3.4	30
125	A Thermogravimetric Analysis Study of the Kuzbass Coals of Different Ranks. Solid Fuel Chemistry, 2018, 52, 6-10.	0.2	3
126	Temperature Hysteresis in the Reaction of Methane Oxidation on a Palladium-Doped Manganese Hexaaluminate Catalyst. Kinetics and Catalysis, 2018, 59, 70-82.	0.3	2

#	Article	IF	CITATIONS
127	Influence of the nitrogen-doped carbon nanofibers on the catalytic properties of supported metal and oxide nanoparticles. Catalysis Today, 2018, 301, 125-133.	2.2	21
128	Semihydrogenation of 2-methyl-3-butyn-2-ol on Pd-Zn nanoalloys: Effect of composition and heterogenization. Applied Catalysis A: General, 2018, 549, 245-253.	2.2	30
129	Spectroscopic study of nitrogen distribution in N-doped carbon nanotubes and nanofibers synthesized by catalytic ethylene-ammonia decomposition. Applied Surface Science, 2018, 435, 1273-1284.	3.1	30
130	Structure of Carbon Sorbents Produced from Coal. Coke and Chemistry, 2018, 61, 463-468.	0.0	11
131	Laser ignition of coal-petn mixtures composition. Journal of Physics: Conference Series, 2018, 1115, 052018.	0.3	0
132	Gas-Hydrate Formation and Phase Transformations of Adsorbed Water in Kuznetsk Basin Coal. Coke and Chemistry, 2018, 61, 193-201.	0.0	0
133	Influence of the Demineralization of Naturally Oxidized Coal on Sorbent Texture. Coke and Chemistry, 2018, 61, 297-300.	0.0	4
134	Petrographic Analysis of >1.40-g/cm3 Coal Fractions. Coke and Chemistry, 2018, 61, 365-370.	0.0	1
135	Influence of Chemical Modification on the Structure, Composition, and Properties of Lignite Humic Acids. Coke and Chemistry, 2018, 61, 396-400.	0.0	3
136	Yield and Composition of Semicoking Tars from Low-Quality Coal. Coke and Chemistry, 2018, 61, 338-343.	0.0	2
137	Non-agglomerated silicon–organic nanoparticles and their nanocomplexes with oligonucleotides: synthesis and properties. Beilstein Journal of Nanotechnology, 2018, 9, 2516-2525.	1.5	13
138	Sorption of Cobalt Cations by Humic Acids. Coke and Chemistry, 2018, 61, 266-269.	0.0	3
139	Spectral-Kinetic Characteristics of Laser Ignition of Pulverized Brown Coal. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 293-299.	0.2	16
140	Porous Structure of Semicoke Based on Slightly Metamorphosed Coal. Coke and Chemistry, 2018, 61, 131-135.	0.0	2
141	Coating the Internal Surface of a Capillary Microreactor for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-ol by PdxZn1 – x/TiO2 Catalysts: A Kinetic Study. Kinetics and Catalysis, 2018, 59, 450-458.	0.3	5
142	Formation of Active Structures in Monolith Copper–Manganese Oxide Catalysts for Air-Heating Devices. Kinetics and Catalysis, 2018, 59, 532-543.	0.3	5
143	Internal Surface Coating of a Capillary Microreactor for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol Using a PdZn/TiO2 Catalyst. The Effect of the Catalyst's Activation Conditions on Its Catalytic Properties. Kinetics and Catalysis, 2018, 59, 347-356.	0.3	10
144	Methods of the Synthesis of Silicon-Containing Nanoparticles Intended for Nucleic Acid Delivery. Eurasian Chemico-Technological Journal, 2018, 20, 177.	0.3	2

#	Article	IF	Citations
145	Control of Ni/Ce1-xMxOy Catalyst Properties Via the Selection of Dopant M = Gd, La, Mg. Part 1. Physicochemical Characteristics. Eurasian Chemico-Technological Journal, 2018, , 283.	0.3	3
146	Control of Ni/Ce1-xMxOy Catalyst Properties Via the Selection of Dopant $M = Gd$, La, Mg. Part 2. Catalytic Activity. Eurasian Chemico-Technological Journal, 2018, , 293.	0.3	1
147	Processing of Lignites into Effective Sorbents for Solving Environmental Problems and Improving the Quality of Life. , 2018, , .		1
148	Research on Oxidation Kinetics of Carbon Black over PtPd/MnOx-Al2O3 Catalyst Surface. Chemistry for Sustainable Development, 2018, , .	0.0	1
149	Efficient inhibition of influenza A viral replication in cells by deoxyribozymes delivered by nanocomposites. International Journal of Antimicrobial Agents, 2017, 49, 703-708.	1.1	16
150	Effect of the nature of sulfur compounds on their reactivity in the oxidative desulfurization of hydrocarbon fuels with oxygen over a modified CuZnAlO catalyst. Kinetics and Catalysis, 2017, 58, 58-72.	0.3	11
151	Structural and morphological properties of Ce1â€"x M x O y (M = Gd, La, Mg) supports for the catalysts of autothermal ethanol conversion. Journal of Structural Chemistry, 2017, 58, 126-134.	0.3	14
152	Effect of the support composition on the physicochemical properties of Ni/Ce1–x La x O y catalysts and their activity in an autothermal methane reforming reaction. Kinetics and Catalysis, 2017, 58, 610-621.	0.3	11
153	Ethylene production by the oxidative condensation of methane in the presence of MnMW/SiO2 catalysts (M = Na, K, and Rb). Kinetics and Catalysis, 2017, 58, 622-629.	0.3	9
154	Development of a Ni–Pd/CeZrO2/Al2O3 catalyst for the effective conversion of methane into hydrogen-containing gas. Kinetics and Catalysis, 2017, 58, 601-609.	0.3	12
155	Surface modification of single-walled carbon nanotubes by functional nitrogen-containing groups and study of their properties. Doklady Physical Chemistry, 2017, 476, 186-189.	0.2	5
156	Synthesis and characterization of 3D hierarchical rutile nanostructures: Effects of synthesis temperature and reagent concentrations on the texture and morphology. Nanotechnologies in Russia, 2017, 12, 156-164.	0.7	1
157	Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties. Carbon, 2017, 122, 475-483.	5.4	82
158	Effect of Pt addition on sulfur dioxide and water vapor tolerance of Pd-Mn-hexaaluminate catalysts for high-temperature oxidation of methane. Applied Catalysis B: Environmental, 2017, 204, 89-106.	10.8	71
159	The Nature of Synergetic Effect of Manganese Oxide and Platinum in Pt–MnOX–Alumina Oxidation Catalysts. Topics in Catalysis, 2017, 60, 52-72.	1.3	16
160	Properties of Kuznets Basin gas coal. Coke and Chemistry, 2017, 60, 261-266.	0.0	3
161	Thermogravimetric Analysis of Moisture Desorption from Coal. Coke and Chemistry, 2017, 60, 375-379.	0.0	2
162	Interaction of Copper, Zinc, and Manganese Cations with Lignite and Humic Acids. Coke and Chemistry, 2017, 60, 397-403.	0.0	3

#	Article	IF	CITATIONS
163	Spectral Study of Modified Humic Acids from Lignite. E3S Web of Conferences, 2017, 21, 02022.	0.2	O
164	Influence of activation on the pore structure of adsorbents obtained from coal–alkali mixtures. Coke and Chemistry, 2017, 60, 239-242.	0.0	2
165	Assessing the closed-pore content in coal at different metamorphic stages. Coke and Chemistry, 2017, 60, 348-355.	0.0	4
166	Stabilization of TiO2 Sols Dispersity at Physiological Conditions and Decrease Their Cytotoxic Properties. Journal of Nanoscience and Nanotechnology, 2017, 17, 9312-9321.	0.9	2
167	Petrographic Characteristics of Kuznetsk Basin Gas Coal. Coke and Chemistry, 2017, 60, 419-423.	0.0	3
168	Sorption of Manganese Cations by Modified Humic Acids from Lignite. Coke and Chemistry, 2017, 60, 433-438.	0.0	1
169	Products of Coal Pyrolysis. Coke and Chemistry, 2017, 60, 476-484.	0.0	3
170	One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids. Beilstein Journal of Nanotechnology, 2017, 8, 2669-2679.	1.5	30
171	Properties of Pd–Ag/C catalysts in the reaction of selective hydrogenation of acetylene. Kinetics and Catalysis, 2017, 58, 649-654.	0.3	20
172	Application of POSS Nanotechnology for Preparation of Efficient Ni Catalysts for Hydrogen Production. Eurasian Chemico-Technological Journal, 2017, 19, 3.	0.3	8
173	Development of a Technique and Investigation of Capacitance Characteristics of Electrode Materials for Supercapacitors Based on Nitrogen-Doped Carbon Nanotubes. Eurasian Chemico-Technological Journal, 2017, 19, 201.	0.3	2
174	Investigation of Physicochemical and Electrochemical Properties of Single-Walled Carbon Nanotubes Modified with Nitrogen. Eurasian Chemico-Technological Journal, 2017, 19, 289.	0.3	1
175	Synthesis of High-Purity Silica Nanoparticles by Sol-Gel Method. Eurasian Chemico-Technological Journal, 2017, 19, 295.	0.3	15
176	Catalytic Synthesis and Studies of Nitrogen Doped Multi-Walled Carbon Nanotubes. Chemistry for Sustainable Development, 2017, , .	0.0	2
177	Sorption of copper cations by native and modified humic acids. Coke and Chemistry, 2016, 59, 420-423.	0.0	2
178	Laser initiation of compositions based on PETN with submicron coal particles. Combustion, Explosion and Shock Waves, 2016, 52, 593-599.	0.3	6
179	Preparation and properties of sorbents from the coals of Mongolia. Solid Fuel Chemistry, 2016, 50, 357-363.	0.2	3
180	Zeolite ZSM-5 containing copper ions: The effect of the copper salt anion and NH4OH/Cu2+ ratio on the state of the copper ions and on the reactivity of the zeolite in DeNO x. Kinetics and Catalysis, 2016, 57, 776-796.	0.3	20

#	Article	IF	Citations
181	Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions. Scientific Reports, 2016, 6, 27255.	1.6	37
182	Structure and properties of Pd–Mn hexaaluminate catalysts modified with platinum for the high-temperature oxidation of methane. Kinetics and Catalysis, 2016, 57, 528-539.	0.3	5
183	Capillary microreactor with a catalytic coating based on mesoporous titanium dioxide for the selective hydrogenation of 2-methyl-3-butyn-2-ol. Kinetics and Catalysis, 2016, 57, 497-503.	0.3	11
184	Determination of the granulometric composition of coal powders by laser diffraction analysis. Solid Fuel Chemistry, 2016, 50, 326-331.	0.2	0
185	Carbon sorbents based on oxidized Kuznetsk Basin coal. Coke and Chemistry, 2016, 59, 260-263.	0.0	5
186	Nanostructured carbonâ€"Ni(OH)2 composites. Russian Chemical Bulletin, 2016, 65, 120-124.	0.4	2
187	Laser ignition of low-rank coal. Russian Journal of Physical Chemistry B, 2016, 10, 963-965.	0.2	12
188	Hydrogen production by autothermal reforming of methane over lanthanum chromites modified with Ru and Sr. International Journal of Hydrogen Energy, 2016, 41, 19373-19381.	3.8	25
189	Observation of the superstructural diffraction peak in the nitrogen doped carbon nanotubes: Simulation of the structure. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 520-530.	1.0	22
190	Formation and decomposition of methane hydrate in coal. Fuel, 2016, 166, 188-195.	3.4	36
191	Comparison of growth mechanisms of undoped and nitrogen-doped carbon nanofibers on nickel-containing catalysts. Chinese Journal of Catalysis, 2016, 37, 169-176.	6.9	12
192	Synergetic effect of Pd addition on catalytic behavior of monolithic platinum–manganese–alumina catalysts for diesel vehicle emission control. Applied Catalysis B: Environmental, 2016, 185, 322-336.	10.8	32
193	Formation and Study of Porous Alumina and Catalytic Coatings by the Use of Cold Gas Dynamic Spraying Method. Materials and Manufacturing Processes, 2016, 31, 1521-1526.	2.7	8
194	Ultrasonic Assisted Fabrication of Nanocomposite Electrode Materials Au/C for Low-Voltage Electronics. Materials and Manufacturing Processes, 2016, 31, 739-744.	2.7	9
195	Evaluation of Synthetic Conditions for H3PO4 Chemically Activated Rice Husk and Preparation of Honeycomb Monoliths. Eurasian Chemico-Technological Journal, 2016, 11, 245.	0.3	6
196	Effect of Preparation Mode on the Properties of Mn-Na-W/SiO2 Catalysts for Oxidative Coupling of Methane: Conventional Methods vs. POSS Nanotechnology. Eurasian Chemico-Technological Journal, 2016, 18, 93.	0.3	16
197	Catalysts for Nitrogen Oxides Removal from Flue Gases. , 2016, , .		2
198	Investigation of the sorption properties of ore materials for the removal of sulfur dioxide from exhaust flue gases of power plants. , 2016 , , .		0

#	Article	IF	Citations
199	Modified humic acids from lignite. Coke and Chemistry, 2015, 58, 400-403.	0.0	5
200	Producing carbon sorbents from naturally oxidized Kuznets Basin coal by mechanical activation. Coke and Chemistry, 2015, 58, 308-311.	0.0	1
201	Aluminosilicate microspheres from the fly ash of kuzbass coal–burning power stations. Solid Fuel Chemistry, 2015, 49, 245-253.	0.2	7
202	The nature of appearance of EPR spectra upon trinitrobenzene adsorption onto dehydrated alumina. Doklady Physical Chemistry, 2015, 461, 69-72.	0.2	2
203	Sorption of copper cations from aqueous solutions by brown coals and humic acids. Solid Fuel Chemistry, 2015, 49, 294-303.	0.2	13
204	Selective hydrogenation of 2-methyl-3-butyn-2-ol catalyzed by embedded polymer-protected PdZn nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	16
205	Cu-substituted ZSM-5 catalyst: Controlling of DeNO reactivity via ion-exchange mode with copper–ammonia solution. Applied Catalysis B: Environmental, 2015, 170-171, 241-254.	10.8	58
206	Highly porous carbon materials filled with gold and manganese oxide nanoparticles for electrochemical use. Catalysis Today, 2015, 249, 220-227.	2.2	11
207	Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study. Chemical Engineering Journal, 2015, 282, 108-115.	6.6	40
208	X-ray diffraction analysis of the crystal structures of different graphites. Solid Fuel Chemistry, 2015, 49, 25-29.	0.2	25
209	Synthesis and characterization of nanostructured hybrid nitrogen- and metal-containing carbon materials. Solid Fuel Chemistry, 2015, 49, 1-6.	0.2	9
210	Composition and technological properties of coal from the Tavantolgoi deposit in Mongolia. Solid Fuel Chemistry, 2015, 49, 129-134.	0.2	6
211	Effect of support modification on the physicochemical properties of a NiPd/Al2O3 catalyst for the autothermal reforming of methane. Kinetics and Catalysis, 2015, 56, 394-402.	0.3	21
212	Cu-Zn-Al-O catalysts for the oxidative desulfurization of dibenzothiophene, a typical sulfur-containing compound of the diesel fraction. Kinetics and Catalysis, 2015, 56, 466-475.	0.3	12
213	Oxidative condensation of methane in the presence of modified MnNaW/SiO2 catalysts. Kinetics and Catalysis, 2015, 56, 456-465.	0.3	13
214	Improved thermal stability of PdZn/TiO ₂ coating by Ce doping. Surface Engineering, 2015, 31, 78-83.	1.1	6
215	Nanostructured composites based on porous carbon matrices filled with nickel hydroxide crystallites. Inorganic Materials, 2015, 51, 405-411.	0.2	3
216	Adsorption of phenol by carbon sorbents based on oxidized coals. Solid Fuel Chemistry, 2015, 49, 30-35.	0.2	5

#	Article	IF	Citations
217	Effect of heat treatment conditions on the catalytic graphitization of coal-tar pitch. Solid Fuel Chemistry, 2015, 49, 66-72.	0.2	22
218	Steam gasification of Mongolian coals. Solid Fuel Chemistry, 2015, 49, 80-86.	0.2	6
219	Composition of gas from the coal beds of the Taldinskoe deposit. Solid Fuel Chemistry, 2015, 49, 59-65.	0.2	2
220	Knockdown of different influenza A virus subtypes in cell culture by a single antisense oligodeoxyribonucleotide. International Journal of Antimicrobial Agents, 2015, 46, 125-128.	1.1	31
221	Cu and Fe-containing ZSM-5 zeolites as catalysts for wet peroxide oxidation of organic contaminants: reaction kinetics. Research on Chemical Intermediates, 2015, 41, 9521-9537.	1.3	17
222	Nitrogen-doped carbon nanomaterials: To the mechanism of growth, electrical conductivity and application in catalysis. Catalysis Today, 2015, 249, 12-22.	2.2	135
223	Deactivation and Regeneration of Mo/ZSM-5 Catalysts for Methane Dehydroaromatization. Eurasian Chemico-Technological Journal, 2015, 12, 1.	0.3	6
224	XRD Characterization of the Structure of Graphites and Carbon Materials Obtained by the Low-Temperature Graphitization of Coal Tar Pitch. Eurasian Chemico-Technological Journal, 2015, 17, 87.	0.3	60
225	Structural Changes of Mo/ZSM-5 Catalysts During the Methane Dehydroaromatization. Eurasian Chemico-Technological Journal, 2015, 12, 9.	0.3	3
226	Highly Dispersed Palladium on Carbon Nanofibers for Hydrogenation of Nitrocompounds to Amines. Eurasian Chemico-Technological Journal, 2015, 17, 101.	0.3	3
227	Design of Highly Efficient Catalyst for Rational Way of Direct Conversion of Methane. Eurasian Chemico-Technological Journal, 2015, 17, 105.	0.3	6
228	New Gas-Phase Catalytic Oxidative Processes for Desulfurization of Diesel Fuel. Eurasian Chemico-Technological Journal, 2015, 17, 119.	0.3	7
229	Direct Catalytic Reduction of SO2 by CH4 over Fe-Mn Catalysts Prepared by Granulation of Ferromanganese Nodules. Eurasian Chemico-Technological Journal, 2015, 17, 129.	0.3	12
230	Investigation of the Sorption Properties of Ore Materials for the Removal of Sulfur Dioxide from Exhaust Flue Gases of Power Plants. Eurasian Chemico-Technological Journal, 2015, 17, 137.	0.3	1
231	High-Performance Mn-Al-O Catalyst on Reticulated Foam Materials for Environmentally Friendly Catalytic Combustion. Eurasian Chemico-Technological Journal, 2015, 17, 145.	0.3	8
232	Highly Porous Carbon Materials Filled with Nickel Hydroxide Nanoparticles; Synthesis, Study, Application in Electrochemistry. Eurasian Chemico-Technological Journal, 2015, 17, 187.	0.3	1
233	Carbon Dioxide Conversion of Methane into Synthesis-Gas on Glass Cloth Catalysts. Eurasian Chemico-Technological Journal, 2015, 12, 97.	0.3	5
234	Mesoporous Carbon-Based Rhodium Catalysts for Benzene Hydrogenation. Eurasian Chemico-Technological Journal, 2015, 14, 37.	0.3	4

#	Article	IF	Citations
235	Mesoporous Composite Materials from Acivated Rice Husk Carbon and Montmorillonite. Eurasian Chemico-Technological Journal, 2015, 13, 105.	0.3	4
236	Catalytic Alkylation of Brown Coal and Peat. Eurasian Chemico-Technological Journal, 2015, 14, 45.	0.3	0
237	Copper Sorption by Coal Substances from Aqueous Solutions. Eurasian Chemico-Technological Journal, 2015, 17, 165.	0.3	0
238	Synthesis of "Silica – Carbon Nanotubes―Composite and Investigation of its Properties. Eurasian Chemico-Technological Journal, 2015, 17, 95.	0.3	1
239	Determination of 2,4,6-Trinitrotoluene in Wastes and Sewage Water from Mining Industry by Chromato-Mass Spectrometry. Eurasian Chemico-Technological Journal, 2015, 15, 307.	0.3	0
240	Hydrogen production by autothermal reforming of methane over NiPd catalysts: Effect of support composition and preparation mode. International Journal of Hydrogen Energy, 2014, 39, 20992-21006.	3.8	43
241	Ruthenium nanoparticles supported on nitrogen-doped carbon nanofibers for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2014, 146, 177-185.	10.8	83
242	Effect of synthesis temperature on properties of nanoscale rutile with high surface area. Nanotechnologies in Russia, 2014, 9, 21-25.	0.7	2
243	Palladium Nanoparticles Supported on Nitrogenâ€Doped Carbon Nanofibers: Synthesis, Microstructure, Catalytic Properties, and Selfâ€Sustained Oscillation Phenomena in Carbon Monoxide Oxidation. ChemCatChem, 2014, 6, 2115-2128.	1.8	38
244	Effect of the mechanoactivation treatment of coals mixed with an alkali on the properties of adsorbents obtained on their basis. Solid Fuel Chemistry, 2014, 48, 245-250.	0.2	5
245	Porous structure of coals from the usinsk deposit in the Pechora Coal Basin. Solid Fuel Chemistry, 2014, 48, 215-223.	0.2	8
246	Hydrogen production by autothermal reforming of methane: Effect of promoters (Pt, Pd, Re, Mo, Sn) on the performance of Ni/La2O3 catalysts. Applied Catalysis A: General, 2014, 481, 104-115.	2.2	42
247	Catalytic and capacity properties of nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers. Chinese Journal of Catalysis, 2014, 35, 960-969.	6.9	13
248	TiO ₂ ~Deoxyribozyme Nanocomposites as Delivery System and Efficient Site-Specific Agents for Cleavage of RNA Targets. Drug Delivery Letters, 2014, 4, 142-147.	0.2	7
249	Synthesis of nanosized thin-film bimetallic catalysts based on mesoporous TiO2 for microstructured reactors. Kinetics and Catalysis, 2013, 54, 511-519.	0.3	6
250	Pt nanoclusters stabilized by N-doped carbon nanofibers for hydrogen production from formic acid. Journal of Catalysis, 2013, 307, 94-102.	3.1	126
251	Composition of resinous ozonization products of raw benzene. Coke and Chemistry, 2013, 56, 36-40.	0.0	О
252	Modification of Mongolian coals using a low-temperature oxygen plasma. Solid Fuel Chemistry, 2013, 47, 83-87.	0.2	3

#	Article	IF	Citations
253	Delivery of bleomycin A5 into cells using TiO2 nanoparticles to enhance the degradation of intracellular DNA. Nanotechnologies in Russia, 2013, 8, 277-282.	0.7	3
254	Synthesis of mesoporous bimetallic Pt-Sn catalytic coatings from polynuclear precursors for fine organic synthesis processes. Journal of Structural Chemistry, 2013, 54, 1034-1043.	0.3	2
255	Physicochemical characteristics of adsorbents based on coals from the Khar Tarvagatai deposit in Mongolia. Solid Fuel Chemistry, 2013, 47, 342-348.	0.2	2
256	Material composition of fractions with different densities separated from slurry coal. Solid Fuel Chemistry, 2013, 47, 243-248.	0.2	4
257	Influence of alkali treatment on the properties of adsorbents based on naturally oxidized Kuznets Basin coal. Coke and Chemistry, 2013, 56, 178-181.	0.0	3
258	Synthesis gas production on glass cloth catalysts modified by Ni and Co oxides. Journal of Energy Chemistry, 2013, 22, 811-818.	7.1	11
259	A correlation between structural changes in a Ni-Cu catalyst during decomposition of ethylene/ammonia mixture and properties of nitrogen-doped carbon nanofibers. Journal of Energy Chemistry, 2013, 22, 270-278.	7.1	25
260	In situ X-ray diffraction study of the growth of nitrogen-doped carbon nanofibers by the decomposition of ethylene–ammonia mixtures on a Ni–Cu catalyst. Carbon, 2013, 52, 486-492.	5.4	16
261	Nanoscale control during synthesis of Me/La2O3, Me/CexGd1â^'xOy and Me/CexZr1â^'xOy (Me=Ni, Pt, Pd,) Tj ETC	Qq <u>1</u> ,1 0.78	343 <u>1</u> 4 rgBT
262	Synthesis and Characterization of Uranium-containing Catalysts. Catalysis Reviews - Science and Engineering, 2013, 55, 135-209.	5.7	32
263	Cu-containing MFI zeolites as catalysts for wet peroxide oxidation of formic acid as model organic contaminant. Applied Catalysis B: Environmental, 2013, 140-141, 506-515.	10.8	47
264	Pore structures of carbon materials based on naturally oxidized Kuzbass coals. Solid Fuel Chemistry, 2013, 47, 292-297.	0.2	1
265	Influence of ozonization on the hydrocarbon composition of raw benzene at coke plants. Coke and Chemistry, 2013, 56, 215-219.	0.0	2
266	Coal from the Alagtgoo field in Mongolia. Coke and Chemistry, 2013, 56, 446-448.	0.0	0
267	Adsorption of phenol by chemically activated D coal. Coke and Chemistry, 2013, 56, 470-474.	0.0	0
268	Nanocomposites Consisting of Titanium Dioxide Nanoparticles and Oligonucleotides. Journal of Nanoscience and Nanotechnology, 2012, 12, 1812-1820.	0.9	29
269	High-performance method for specific effect on nucleic acids in cells using TiO2~DNA nanocomposites. Scientific Reports, 2012, 2, 756.	1.6	35
270	Regulation of the copper-oxide cluster structure and DeNOx activity of Cu-ZSM-5 catalysts by variation of OH/Cu2+. Catalysis Today, 2012, 197, 214-227.	2.2	39

#	Article	IF	CITATIONS
271	The state of Cu2+ ions in concentrated aqueous ammonia solutions of copper nitrate. Russian Journal of Inorganic Chemistry, 2012, 57, 1285-1290.	0.3	10
272	Processing low-grade oxidized coal to produce effective carbon sorbents. Coke and Chemistry, 2012, 55, 115-118.	0.0	9
273	Modification of coal tar in low-temperature oxygen plasma. Coke and Chemistry, 2012, 55, 277-281.	0.0	2
274	Modification of coal tar by nitrous oxide. Coke and Chemistry, 2012, 55, 319-323.	0.0	2
275	Production of highly porous carbon sorbents for methane storage from coal, coke, and individual organic compounds. Coke and Chemistry, 2012, 55, 353-357.	0.0	5
276	Dependence of Synergetic Effect of Palladium–Manganese-Hexaaluminate Combustion Catalyst on Nature of Palladium Precursor. Topics in Catalysis, 2012, 55, 818-836.	1.3	17
277	Porous structure of adsorbents based on naturally oxidized Kuznets Basin coal. Coke and Chemistry, 2012, 55, 429-431.	0.0	7
278	Effect of the alkylation of brown coal and peat on the composition and properties of humic acids isolated from them. Solid Fuel Chemistry, 2012, 46, 339-351.	0.2	11
279	Oxidative modification of coal tar with ozone in various media. Solid Fuel Chemistry, 2012, 46, 352-356.	0.2	5
280	Effects of the degree of graphitization and the presence of Fe, Ni, Al, and Si on the reaction stability of carbon materials to the action of CO2. Solid Fuel Chemistry, 2012, 46, 357-363.	0.2	3
281	Properties of nanoporous carbon material with one-dimensional conductivity. Solid Fuel Chemistry, 2012, 46, 297-304.	0.2	3
282	Activity of coals from mongolian deposits in the process of thermochemical degradation. Solid Fuel Chemistry, 2012, 46, 305-309.	0.2	0
283	Alkylation of coal and peat with alcohols. Solid Fuel Chemistry, 2012, 46, 241-254.	0.2	2
284	Synthesis of Nanoscale <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO< Study of the Effect of Their Crystal Structure on Single Cell Response. Scientific World Journal, The, 2012, 2012, 1-14.</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>	/mml:mte	xt>
285	Palladium–zinc catalysts on mesoporous titania prepared by colloid synthesis. I. Size control synthesis of PdZn nanoclusters by a polyol method. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	13
286	Palladium–zinc catalysts on mesoporous titania prepared by colloid synthesis. II. Synthesis and characterization of PdZn/TiO2 coating on inner surface of fused silica capillary. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	10
287	Platinum nanoparticles supported on nitrogen-containing carbon nanofibers. Catalysis Today, 2012, 186, 42-47.	2.2	33
288	Qualitative characteristics of power-generating coals from some deposits in Mongolia. Solid Fuel Chemistry, 2012, 46, 143-148.	0.2	1

#	Article	IF	Citations
289	Low-temperature activation of nitrogen oxide on Cu-ZSM-5 catalysts. Kinetics and Catalysis, 2012, 53, 363-373.	0.3	10
290	In situ study on changes in the phase composition of a Ni-Cu catalyst during growth of nitrogen-containing carbon nanofibers. Doklady Physical Chemistry, 2011, 439, 127-130.	0.2	5
291	Specific features of association of Cu2+ ions in concentrated aqueous ammonia solutions of copper nitrate as probed by ESR. Doklady Physical Chemistry, 2011, 440, 194-197.	0.2	6
292	Preparation and characterization of bulk uranium oxides for catalysis. Mendeleev Communications, 2011, 21, 209-211.	0.6	9
293	Oxidative Desulfurization of Hydrocarbon Fuels. Catalysis Reviews - Science and Engineering, 2011, 53, 199-255.	5.7	199
294	Methane conversion to valuable chemicals over nanostructured Mo/ZSM-5 catalysts. Petroleum Chemistry, 2011, 51, 174-186.	0.4	22
295	Catalysts for processing light hydrocarbon raw stock: Combustion synthesis and characterization. International Journal of Self-Propagating High-Temperature Synthesis, 2011, 20, 124-127.	0.2	1
296	Influence of additives in the batch on benzopyrene emission during the production of anodic carbon and graphite. Coke and Chemistry, 2011, 54, 241-243.	0.0	0
297	Effect of the electronic state and copper localization in ZSM-5 pores on performance in NO selective catalytic reduction by propane. Applied Catalysis B: Environmental, 2011, 103, 1-10.	10.8	21
298	Interaction of titanium dioxide nanoparticles with influenza virus. Nanotechnologies in Russia, 2010, 5, 417-420.	0.7	105
299	Developing new catalysts and improving catalytic methods for purifying the flue gases of Vanyukov and flash smelting furnaces. Catalysis in Industry, 2010, 2, 353-359.	0.3	0
300	Synthesis and properties of a microporous carbon material as a catalyst support for fuel cells. Kinetics and Catalysis, 2010, 51, 312-317.	0.3	0
301	Control of the thickness of mesoporous titania films for application in multiphase catalytic microreactors. Journal of Catalysis, 2010, 271, 161-169.	3.1	39
302	Characterization of alumina-supported uranium oxide catalysts in methane oxidation. Catalysis Today, 2010, 157, 217-222.	2.2	20
303	Technology of methane combustion on granulated catalysts for environmentally friendly gas turbine power plants. Catalysis Today, 2010, 155, 35-44.	2.2	8
304	Structural changes in a nickel–copper catalyst during growth of nitrogen-containing carbon nanofibers by ethylene/ammonia decomposition. Carbon, 2010, 48, 2792-2801.	5.4	29
305	Peculiarities of dehydroaromatization of CH4–C2H6 and CH4 over Mo/ZSM-5 catalysts. Reaction Kinetics and Catalysis Letters, 2009, 98, 59-67.	0.6	11
306	Determination of the Tolman length in the improved Derjaguin–Broekhoff–de Boer theory for capillary condensation of ethanol in mesoporous thin films by ellipsometric porosimetry. Microporous and Mesoporous Materials, 2009, 123, 243-252.	2.2	12

#	Article	IF	CITATIONS
307	Properties of Nb-doped SrCo0.8Fe0.2O3â^'d perovskites in oxidizing and reducing environments. Catalysis Today, 2009, 147, 270-274.	2.2	19
308	Deep desulphurization of diesel fuels on bifunctional monolithic nanostructured Pt-zeolite catalysts. Catalysis Today, 2009, 144, 235-250.	2.2	39
309	Structured catalyst and combined reactor loading for methane combustion in a gas turbine power plant. Catalysis Today, 2009, 147, S237-S243.	2.2	7
310	Preparation of carbonized rice husk monoliths and modification of the porous structure by SiO2 leaching. Catalysis Today, 2009, 147, S58-S65.	2.2	22
311	Design of Pt–Sn catalysts on mesoporous titania films for microreactor application. Catalysis Today, 2009, 147, S81-S86.	2.2	29
312	Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon, 2009, 47, 1922-1929.	5.4	330
313	Synthesis and stabilization of nano-sized titanium dioxide. Russian Chemical Reviews, 2009, 78, 873-885.	2.5	87
314	An examination of the ability of titanium dioxide nanoparticles and its conjugates with oligonucleotides to penetrate into eucariotis cells. Nanotechnologies in Russia, 2009, 4, 732.	0.7	9
315	Oxidation of organic compounds in a microstructured catalytic reactor. Chemical Engineering Journal, 2008, 135, S57-S65.	6.6	38
316	A method to obtain a high loading of nano-sized Pt particles on carbon supports with a low surface area. Carbon, 2008, 46, 549-552.	5.4	2
317	Catalytic synthesis of thiophene from dialkyl disulfides and n-butane. Petroleum Chemistry, 2008, 48, 112-117.	0.4	3
318	Nanosize catalysts based on carbon materials promoted by cobalt tetra(para-methoxyphenyl) porphyrin pyropolymer for oxygen electroreduction. Russian Journal of Electrochemistry, 2008, 44, 293-302.	0.3	13
319	Development and testing of granular catalysts for combustors of regenerative gas turbine plants. Kinetics and Catalysis, 2008, 49, 873-885.	0.3	8
320	Stabilization of copper nanoparticles in Cu-ZSM-5. Studies in Surface Science and Catalysis, 2008, , 177-180.	1.5	3
321	Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives. Energy and Environmental Science, 2008, 1, 526.	15.6	222
322	Density Functional Theory Molecular Cluster Study of Copper Interaction with Nitric Oxide Dimer in Cuâ ⁻ 2SM-5 Catalysts. Journal of Physical Chemistry C, 2007, 111, 3080-3089.	1.5	22
323	Synthesis and characterization of mesoporous silica thin films as a catalyst support on a titanium substrate. Thin Solid Films, 2007, 515, 6391-6394.	0.8	24
324	Synthesis of nitrogen-containing carbon nanofibers by catalytic decomposition of ethylene/ammonia mixture. Carbon, 2007, 45, 1808-1820.	5.4	90

#	Article	IF	Citations
325	Self-propagating synthesis of Pd-CeO2/Al2O3 automotive monolith catalysts. Kinetics and Catalysis, 2007, 48, 162-167.	0.3	8
326	Characterization of new catalysts based on uranium oxides. Kinetics and Catalysis, 2007, 48, 511-520.	0.3	15
327	Synthesis of nitrogen-containing carbon materials for solid polymer fuel cell cathodes. Kinetics and Catalysis, 2007, 48, 581-588.	0.3	6
328	Purification of gases from sulfur compounds. Russian Journal of Non-Ferrous Metals, 2007, 48, 118-120.	0.2	0
329	Study of Methane Dehydroaromatization on Impregnated Mo/ZSM-5 Catalysts and Characterization of Nanostructured Molybdenum Phases and Carbonaceous Deposits. Industrial & Engineering Chemistry Research, 2007, 46, 4063-4074.	1.8	96
330	Development of monolithic catalysts with low noble metal content for diesel vehicle emission control. Topics in Catalysis, 2007, 42-43, 465-469.	1.3	18
331	Properties and deactivation of the active sites of an MoZSM-5 catalyst for methane dehydroaromatization: Electron microscopic and EPR studies. Kinetics and Catalysis, 2006, 47, 389-394.	0.3	34
332	Oxygen diffusion in nanostructured perovskites. Catalysis Today, 2006, 118, 151-157.	2.2	27
333	High-temperature catalysts with a synergetic effect of Pd and manganese oxides. Catalysis Today, 2006, 117, 525-535.	2.2	27
334	Quantum-chemical analysis of the CuCl2 molecule. Journal of Structural Chemistry, 2006, 47, 404-412.	0.3	6
335	Development of active catalysts for low Pt loading cathodes of PEMFC by surface tailoring of nanocarbon materials. Catalysis Today, 2005, 102-103, 58-66.	2.2	83
336	Catalytic filamentous carbons-supported Ni for low-temperature methane decomposition. Catalysis Today, 2005, 102-103, 115-120.	2.2	36
337	Formation of textural and mechanical properties of extruded ceramic honeycomb monoliths: An 1H NMR imaging study. Catalysis Today, 2005, 105, 507-515.	2.2	19
338	Catalytic properties and electronic structure of copper ions in Cu-ZSM-5. Catalysis Today, 2005, 110, 310-322.	2.2	110
339	Development of methods of growing carbon nanofibers on silica glass fiber supports. Catalysis Today, 2005, 102-103, 85-93.	2.2	5
340	Characteristics of drying and active component distribution in alumina monoliths using 1H-NMR imaging. Catalysis Today, 2005, 105, 484-491.	2.2	14
341	Effect of thermal treatment on states of molybdenum in Mo/H?ZSM-5 catalyst for methane dehydroaromatization: ESR and UV?VIS study. Topics in Catalysis, 2005, 32, 61-70.	1.3	8
342	Ab initio calculation of nitrogen oxide dimer structure and its anion-radical. Journal of Structural Chemistry, 2005, 46, 213-219.	0.3	4

#	Article	IF	CITATIONS
343	The State of the Active Sites and Deactivation of Mo-ZSM-5 Catalysts of Methane Dehydroaromatization. Doklady Physical Chemistry, 2005, 404, 201-204.	0.2	12
344	Correlation between the Cu/Al Value and Activity of Cu-ZSM-5 Catalysts and the Chemical Nature of the Starting Copper Salt. Kinetics and Catalysis, 2005, 46, 613-617.	0.3	9
345	EXAFS Study of Nb Doped SrCoFeO3x Perovskites. Physica Scripta, 2005, , 740.	1.2	17
346	Development of Monolithic Catalysts with Low Noble Metal Content for Diesel Vehicle Emission Control. Topics in Catalysis, 2004, 30/31, 293-298.	1.3	20
347	Stabilization of Co2+and Cu2+by Extraframework Aluminum Ions in HZSM-5 Zeolite Channels. Doklady Physical Chemistry, 2004, 398, 226-230.	0.2	11
348	Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures. Applied Catalysis A: General, 2004, 270, 87-99.	2.2	83
349	Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperaturesl. Genesis of calcined and reduced catalysts. Applied Catalysis A: General, 2004, 268, 127-138.	2.2	70
350	Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts. Applied Surface Science, 2004, 226, 88-93.	3.1	58
351	Catalytic filamentous carbon as supports for nickel catalysts. Carbon, 2004, 42, 143-148.	5.4	53
352	Gasification behavior of catalytic filamentous carbon. Carbon, 2004, 42, 2501-2507.	5.4	11
353	Title is missing!. Doklady Physical Chemistry, 2003, 392, 207-211.	0.2	14
354	Separation of the Tributyl Phosphate-Kerosene Extraction Mixture Using Formic Acid. Radiochemistry, 2003, 45, 367-370.	0.2	1
355	Fuel Combustion Reactions and Catalysts: XXI. Synthesis and Characterization of Modified Mn–Al–O Catalysts for High-Temperature Oxidation. Kinetics and Catalysis, 2003, 44, 806-812.	0.3	4
356	Study of catalysts for catalytic burners for fuel cell power plant reformers. Korean Journal of Chemical Engineering, 2003, 20, 461-467.	1.2	16
357	Catalytic filamentous carbon. Carbon, 2003, 41, 1605-1615.	5.4	136
358	Carbon capacious Ni-Cu-Al2O3 catalysts for high-temperature methane decomposition. Applied Catalysis A: General, 2003, 247, 51-63.	2.2	214
359	Iron-containing catalysts of methane decomposition: accumulation of filamentous carbon. Applied Catalysis A: General, 2002, 228, 53-63.	2.2	136
360	Detoxication of water containing 1,1-dimethylhydrazine by catalytic oxidation with dioxygen and hydrogen peroxide over Cu- and Fe-containing catalysts. Catalysis Today, 2002, 75, 219-225.	2.2	50

#	Article	IF	CITATIONS
361	Oxidation of unsymmetrical dimethylhydrazine over heterogeneous catalysts. Catalysis Today, 2002, 75, 277-285.	2.2	32
362	Study of the reaction of high-temperature H2S decomposition on metal oxides (γ-Al2O3,α-Fe2O3,V2O5). International Journal of Hydrogen Energy, 2002, 27, 387-394.	3.8	89
363	Detection of O– Radical Anions in Cu-ZSM-5 Zeolites after Heat Treatment. Doklady Chemistry, 2002, 386, 273-276.	0.2	9
364	H2S decomposition activity of TS carbon derived from furan resin. Carbon, 2001, 39, 1611-1612.	5.4	12
365	Title is missing!. Topics in Catalysis, 2001, 16/17, 307-310.	1.3	5
366	Title is missing!. Kinetics and Catalysis, 2001, 42, 847-853.	0.3	7
367	Title is missing!. Kinetics and Catalysis, 2001, 42, 854-856.	0.3	0
368	Deactivation of manganese oxide-based honeycomb monolith catalyst under reaction conditions of ammonia decomposition at high temperature. Catalysis Today, 2001, 69, 253-257.	2.2	12
369	Supported honeycomb monolith catalysts for high-temperature ammonia decomposition and H2S removal. Catalysis Today, 2001, 69, 351-356.	2.2	26
370	A catalytic heat-exchanging tubular reactor for combining of high temperature exothermic and endothermic reactions. Chemical Engineering Journal, 2001, 82, 355-360.	6.6	63
371	A role of catalysis for the destruction of waste from the nuclear industry. Catalysis Today, 2000, 55, 23-43.	2.2	14
372	Study of the catalysts for fuel combustion reactions: XX. Thermal stability and other properties of the CeO2-MgO-Al2O3 system. Kinetics and Catalysis, 2000, 41, 662-669.	0.3	0
373	Study of the catalysts for fuel combustion reactions: XIX. Thermal stability of alumina promoted with lanthanum and silicon. Kinetics and Catalysis, 2000, 41, 394-398.	0.3	2
374	Catalytic combustion of lean methane–air mixtures. Catalysis Today, 1999, 47, 149-153.	2.2	12
375	Fluidized bed catalytic combustion. Catalysis Today, 1999, 47, 339-346.	2.2	35
376	Application of plasma spraying in the preparation of metal-supported catalysts. Catalysis Today, 1999, 51, 411-417.	2.2	34
377	New technology for production of spherical alumina supports for fluidized bed combustion. Catalysis Today, 1999, 47, 51-71.	2.2	70
378	Catalysis solves environmental problems of nuclear industry. Critical Reviews in Analytical Chemistry, 1998, 28, 350-351.	1.8	0

#	Article	IF	CITATIONS
379	Preparation and study of thermally stable washcoat aluminas for automotive catalysts Studies in Surface Science and Catalysis, 1998, 116, 507-511.	1.5	10
380	Preparation and study of thermally and mechanically stable ceramic fiber based catalysts for gas combustion Studies in Surface Science and Catalysis, 1998, , 83-86.	1.5	3
381	Methane combustion over copper chromite catalysts. Catalysis Letters, 1997, 48, 39-46.	1.4	22
382	Monolithic catalyst design, engineering and prospects of application for environmental protection in Russia. Reaction Kinetics and Catalysis Letters, 1997, 60, 215-218.	0.6	4
383	Porous alumina as a support for catalysts and membranes. Preparation and study. Reaction Kinetics and Catalysis Letters, 1997, 60, 225-231.	0.6	31
384	Hydrocarbon-ammonia moulding-a new technology for production of combustion catalysts. Korean Journal of Chemical Engineering, 1997, 14, 153-161.	1.2	4
385	Selective catalytic oxidation of ammonia to nitrogen. Reaction Kinetics and Catalysis Letters, 1996, 57, 71-79.	0.6	53
386	Synthesis of a mechanically strong and thermally stable alumina support for catalysts used in combustion processes. Catalysis Today, 1996, 29, 427-431.	2.2	10
387	Synthesis and study of honeycomb monolithic catalysts for catalytic combustion. Studies in Surface Science and Catalysis, 1995, 96, 387-392.	1.5	3
388	Some aspects of extrusion procedure for monolithic SCR catalyst based on TiO2. Studies in Surface Science and Catalysis, 1995, 91, 775-782.	1.5	2
389	Thermostability of copper-chromium oxide catalysts on alumina support promoted by lanthanum and cerium. Studies in Surface Science and Catalysis, 1995, , 1145-1152.	1.5	2
390	Boreskov Institute of catalysis initiates an international science and technology center project for the treatment of radioactive waste in mixed organic media. Applied Catalysis A: General, 1995, 121, N2-N3.	2.2	2
391	Synthesis of mechanically strong and thermally stable spherical alumina catalyst supports for the process of methane dimerization in a fluidized bed. Catalysis Today, 1995, 24, 269-271.	2.2	14
392	Oxidative coupling of methane over sodium doped Vî—,Moî—,Oî—,SiO2 honeycomb catalysts. Catalysis Today, 1995, 24, 281-284.	2.2	1
393	Thermal transformations of a support for fuel combustion catalysts. Reaction Kinetics and Catalysis Letters, 1995, 54, 337-345.	0.6	2
394	Effect of the nature of titania on the activity of Cuâ^'Tiâ^'O catalysts for selective catalytic reduction of nitrogen oxides with ammonia. Reaction Kinetics and Catalysis Letters, 1995, 54, 361-369.	0.6	12
395	Cuâ^'Tiâ^'O catalyst for complex purification of gases. Reaction Kinetics and Catalysis Letters, 1995, 54, 371-379.	0.6	7
396	Porous structure of alumina ceramic supports for gas separation membranes, I. Preparation and study of the extrusion masses. Reaction Kinetics and Catalysis Letters, 1995, 54, 181-191.	0.6	7

#	Article	IF	CITATIONS
397	Porous structure of alumina ceramic support for gas separation membranes, II. Study of porous structure of ceramic composition. Reaction Kinetics and Catalysis Letters, 1995, 54, 193-201.	0.6	7
398	New catalysts and processes for environment protection. Reaction Kinetics and Catalysis Letters, 1995, 55, 489-499.	0.6	5
399	Katalistik from novosibirsk. Applied Catalysis A: General, 1994, 111, N21-N23.	2.2	1
400	Relationship between sulfur dioxide oxidation and selective catalytic NO reduction by ammonia on V2O5â^'TiO2 catalysts doped with WO3 and Nb2O5. Reaction Kinetics and Catalysis Letters, 1994, 52, 101-106.	0.6	24
401	Effect of parent titanium oxide on the physico-chemical properties of Cuâ-'Ti oxide catalysts. Reaction Kinetics and Catalysis Letters, 1994, 52, 129-137.	0.6	9
402	Chromium catalysts for hydrocarbons destruction. Catalysis Today, 1993, 17, 209-216.	2.2	6
403	Study of the deactivation and regeneration of copper chromite on ?-alumina and magnesium chromite on ?-alumina catalysts for fuel combustion. Catalysis Letters, 1992, 15, 347-351.	1.4	6
404	Study of elementary reactions of free radicals formed on oxide and platinum containing catalysts. Catalysis Letters, 1992, 15, 353-362.	1.4	3
405	Studies of supported oxide catalysts in the direct selective oxidation of hydrogen sulfide. Reaction Kinetics and Catalysis Letters, 1992, 48, 55-63.	0.6	17
406	Heterogeneous-homogeneous reactions involving free radicals in processes of total catalytic oxidation. Journal of Catalysis, 1992, 136, 197-201.	3.1	11
407	Influence of the method of alumina modification on formation of low-temperature solid solutions in magnesiaâ€"alumina systems. Applied Catalysis, 1991, 72, 63-69.	1.1	17
408	Interrelation between structural and mechanical characteristics of spherical alumina granules and the initial hydroxide properties. Applied Catalysis, 1991, 69, 65-73.	1.1	22
409	Study of the Deactivation of Supported Oxide Catalysts for Fuel Combustion using A Complex of Physical-Chemical Methods. Studies in Surface Science and Catalysis, 1991, , 457-460.	1.5	O
410	Heterogeneous-homogeneous radical reactions in total catalytic oxidation. Theoretical and Experimental Chemistry, 1991, 27, 476-480.	0.2	1
411	Production of spherical granules of alumina with controlled porous structure. Applied Catalysis, 1991, 78, 175-184.	1.1	8
412	Catalytic methods for lowering the amount of nitrogen oxides in exhaust gases on combustion of fuel. Russian Chemical Reviews, 1990, 59, 973-988.	2.5	18
413	Catalytic Fuel Combustion—A Way of Reducing Emission of Nitrogen Oxides. Catalysis Reviews - Science and Engineering, 1990, 32, 51-103.	5.7	114
414	Thermal stability of supported Alâ^'Cuâ^'Cr catalysts. Reaction Kinetics and Catalysis Letters, 1989, 38, 307-312.	0.6	10

#	Article	IF	CITATIONS
415	Study of structural and mechanical properties of granulated alumina supports using x-ray microprobes. Applied Catalysis, 1989, 55, 75-80.	1.1	9
416	Principles of formation of nitrogen oxides in acetonitrile oxidation on copper-chromium and platinum catalysts. Reaction Kinetics and Catalysis Letters, 1986, 31, 27-33.	0.6	5
417	Formation of nitrogen oxides during the oxidation of nitromethane on copper-chromium catalyst. Reaction Kinetics and Catalysis Letters, 1986, 31, 35-40.	0.6	3
418	Photolysis of alkylperoxy radicals frozen out from the gas phase. Reaction Kinetics and Catalysis Letters, 1986, 32, 429-434.	0.6	4
419	Effect of acio properties of the alumina surface on the formation of chlorides during its interaction with CCl4. Reaction Kinetics and Catalysis Letters, 1986, 31, 321-325.	0.6	0
420	Optical spectroscopic studies of CuCr2O4 \hat{l}^3 -Al2O3. Catalyst deactivation under operation in catalytic heat generators. Reaction Kinetics and Catalysis Letters, 1985, 28, 195-201.	0.6	14
421	XPS studies of Cu-Cr catalyst deactivation in catalytic heat generators. Reaction Kinetics and Catalysis Letters, 1985, 28, 211-217.	0.6	10
422	Studies of sulfur-poisoning of supported oxide Ni-Cr catalysts. Reaction Kinetics and Catalysis Letters, 1985, 28, 219-224.	0.6	0
423	Tellurium NaX zeolites II. Nature of active sites. Journal of Catalysis, 1983, 81, 369-374.	3.1	4
424	Formation of nitrogen oxides in catalytic oxidation of pyridine. Reaction Kinetics and Catalysis Letters, 1983, 23, 43-48.	0.6	17
425	Formation of nitrogen oxides in the oxidation of pyridine on some oxide catalysts. Reaction Kinetics and Catalysis Letters, 1983, 23, 49-54.	0.6	14
426	Kinetic isotope effect in the mechanism of alcohol oxidation on CuO/Al2O3 catalyst. Reaction Kinetics and Catalysis Letters, 1983, 23, 79-84.	0.6	1
427	Kinetic model of ethanol oxidation on supported CuO catalyst. Reaction Kinetics and Catalysis Letters, 1983, 23, 143-147.	0.6	6
428	Tellurium NaX zeolites I. Deuterium tracer studies of cyclohexane dehydrogenation to benzene. Journal of Catalysis, 1982, 73, 361-365.	3.1	12
429	Dehydrocyclization of n-Paraffins Over Te-NaX Zeolite Catalysts. Studies in Surface Science and Catalysis, 1981, , 708-723.	1.5	3
430	Oxidation of ethanol on platinum/alumina and copper oxide catalysts. Reaction Kinetics and Catalysis Letters, 1979, 10, 55-59.	0.6	20
431	Methanol oxidation on copper-oxide catalysts. Reaction Kinetics and Catalysis Letters, 1979, 11, 125-128.	0.6	2
432	Comparative Studies of Cellular Permeable Solids as Catalyst Supports. Solid State Phenomena, 0, 135, 150-153.	0.3	1

#	Article	IF	CITATIONS
433	Correlation between High-Temperature Structural Rearrangements and Oxygen Outlet in Perovskite SrCo _{0.6} Fe _{0.2} 0.2O _{3â^'z<solid 0,="" 163,="" 38-41.<="" phenomena,="" state="" td=""><td>/suob&agt.</td><td>4</td></solid>}	/suob&agt.	4
434	Synthesis of Microporous-Mesoporous Carbons from Rice Husk via H ₃ PO ₄ -Activation. Advanced Materials Research, 0, 602-604, 85-89.	0.3	4
435	Catalytic methods of converting carbon dioxide into useful products to reduce the impact of coal generation on global climate change. Physics-Uspekhi, 0, , .	0.8	1
436	Improved stability of catalytic coatings based on Zn-doped titania for selective hydrogenation of a triple bond in a microcapillary reactor. Reaction Kinetics, Mechanisms and Catalysis, 0, , .	0.8	0