
Antonio De Maio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3123406/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	HEAT SHOCK PROTEINS: FACTS, THOUGHTS, AND DREAMS. Shock, 1999, 11, 1-12.	1.0	529
2	Hsp70 Translocates into the Plasma Membrane after Stress and Is Released into the Extracellular Environment in a Membrane-Associated Form that Activates Macrophages. Journal of Immunology, 2008, 180, 4299-4307.	0.4	371
3	Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: A form of communication during injury, infection, and cell damage. Cell Stress and Chaperones, 2011, 16, 235-249.	1.2	233
4	Extracellular Heat Shock Proteins. Shock, 2013, 40, 239-246.	1.0	148
5	Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB Journal, 2004, 18, 1636-1645.	0.2	137
6	Gap junctions, homeostasis, and injury. Journal of Cellular Physiology, 2002, 191, 269-282.	2.0	128
7	GENETIC DETERMINANTS INFLUENCING THE RESPONSE TO INJURY, INFLAMMATION, AND SEPSIS. Shock, 2005, 23, 11-17.	1.0	121
8	Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress and Chaperones, 2002, 7, 330.	1.2	121
9	ATP and ADP Modulate a Cation Channel Formed by Hsc70 in Acidic Phospholipid Membranes. Journal of Biological Chemistry, 2000, 275, 30839-30843.	1.6	106
10	Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB Journal, 2009, 23, 2467-2477.	0.2	95
11	GENETIC COMPONENT IN THE INFLAMMATORY RESPONSE INDUCED BY BACTERIAL LIPOPOLYSACCHARIDE. Shock, 1998, 10, 319-323.	1.0	82
12	Extracellular Hsp70: Export and Function. Current Protein and Peptide Science, 2014, 15, 225-231.	0.7	79
13	General Anesthesia Delays the Inflammatory Response and Increases Survival for Mice with Endotoxic Shock. Vaccine Journal, 2006, 13, 281-288.	3.2	73
14	Interaction of heat shock protein 70 with membranes depends on the lipid environment. Cell Stress and Chaperones, 2014, 19, 877-886.	1.2	53
15	Posttranscriptional regulation of connexin 32 expression in liver during acute inflammation. , 1996, 166, 461-467.		52
16	Ferruccio Ritossa's scientific legacy 50Âyears after his discovery of the heat shock response: a new view of biology, a new society, and a new journal. Cell Stress and Chaperones, 2012, 17, 139-143.	1.2	44
17	Induction of translational thermotolerance in liver of thermally stressed rats. FEBS Journal, 1993, 218, 413-420.	0.2	41
18	Increase in Phagocytosis after Geldanamycin Treatment or Heat Shock: Role of Heat Shock Proteins. Journal of Immunology, 2005, 175, 5280-5287.	0.4	41

Αντόνιο De Maio

#	Article	IF	CITATIONS
19	A new feature of the stress response: increase in endocytosis mediated by Hsp70. Cell Stress and Chaperones, 2010, 15, 517-527.	1.2	34
20	Modulation of Alzheimer's amyloid β peptide oligomerization and toxicity by extracellular Hsp70. Cell Stress and Chaperones, 2018, 23, 269-279.	1.2	33
21	Isolation and characterization of human urine extracellular vesicles. Cell Stress and Chaperones, 2018, 23, 943-953.	1.2	32
22	Early hyperbaric oxygen therapy improves survival in a model of severe sepsis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R160-R168.	0.9	29
23	Urbanization in Subâ€Saharan Africa: Declining Rates of Chronic and Recurrent Infection and Their Possible Role in the Origins of Nonâ€communicable Diseases. World Journal of Surgery, 2018, 42, 1617-1628.	0.8	27
24	COVID-19, acute respiratory distress syndrome (ARDS), and hyperbaric oxygen therapy (HBOT): what is the link?. Cell Stress and Chaperones, 2020, 25, 717-720.	1.2	27
25	Bacterial Hsp70 (DnaK) and mammalian Hsp70 interact differently with lipid membranes. Cell Stress and Chaperones, 2016, 21, 609-616.	1.2	26
26	Quantitative trait loci modulate neutrophil infiltration in the liver during LPSâ€induced inflammation. FASEB Journal, 2000, 14, 2247-2254.	0.2	25
27	Period of Irreversible Therapeutic Intervention during Sepsis Correlates with Phase of Innate Immune Dysfunction. Journal of Biological Chemistry, 2012, 287, 19804-19815.	1.6	24
28	The interaction of heat shock proteins with cellular membranes: a historical perspective. Cell Stress and Chaperones, 2021, 26, 769-783.	1.2	23
29	Why Antibiotic Treatment Is Not Enough for Sepsis Resolution: an Evaluation in an Experimental Animal Model. Infection and Immunity, 2017, 85, .	1.0	22
30	Differential decrease in Connexin 32 expression in ischemic and nonischemic regions of rat liver during ischemia/reperfusion. Journal of Cellular Physiology, 1997, 171, 20-27.	2.0	18
31	Promoter activity of the rat connexin 43 gene in NRK cells. Journal of Cellular Biochemistry, 2001, 81, 514-522.	1.2	18
32	Interaction of HSPA5 (Grp78, BIP) with negatively charged phospholipid membranes via oligomerization involving the N-terminal end domain. Cell Stress and Chaperones, 2020, 25, 979-991.	1.2	18
33	The small heat shock proteins, HSPB1 and HSPB5, interact differently with lipid membranes. Cell Stress and Chaperones, 2019, 24, 947-956.	1.2	17
34	Can hyperbaric oxygen safely serve as an anti-inflammatory treatment for COVID-19?. Medical Hypotheses, 2020, 144, 110224.	0.8	17
35	Activation of the stress response in macrophages alters the M1/M2 balance by enhancing bacterial killing and IL-10 expression. Journal of Molecular Medicine, 2014, 92, 1305-1317.	1.7	15
36	Sustained expression of lipocalin-2 during polymicrobial sepsis. Innate Immunity, 2015, 21, 477-489.	1.1	15

ANTONIO DE MAIO

#	Article	IF	CITATIONS
37	Human heat shock cognate protein (HSC70/HSPA8) interacts with negatively charged phospholipids by a different mechanism than other HSP70s and brings HSP90 into membranes. Cell Stress and Chaperones, 2021, 26, 671-684.	1.2	15
38	Cx32 mRNA in rat liver: effects of inflammation on poly(A) tail distribution and mRNA degradation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1249-R1257.	0.9	14
39	The Antifungal Agent Itraconazole Induces the Accumulation of High Mannose Glycoproteins in Macrophages. Journal of Biological Chemistry, 2009, 284, 16882-16890.	1.6	13
40	Macrophage reprogramming by negatively charged membrane phospholipids controls infection. FASEB Journal, 2019, 33, 2995-3009.	0.2	13
41	Thermal aggregates of human mortalin and Hsp70-1A behave as supramolecular assemblies. International Journal of Biological Macromolecules, 2020, 146, 320-331.	3.6	13
42	Human HSPA9 (mtHsp70, mortalin) interacts with lipid bilayers containing cardiolipin, a major component of the inner mitochondrial membrane. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183436.	1.4	13
43	Heat shock proteins and the biogenesis of cellular membranes. Cell Stress and Chaperones, 2021, 26, 15-18.	1.2	12
44	Extremes of age are associated with differences in the expression of selected pattern recognition receptor genes and ACE2, the receptor for SARS-CoV-2: implications for the epidemiology of COVID-19 disease. BMC Medical Genomics, 2021, 14, 138.	0.7	12
45	Changes in macrophage function modulated by the lipid environment. Innate Immunity, 2016, 22, 141-151.	1.1	10
46	Memory Loss and the Onset of Alzheimer's Disease Could Be Under the Control of Extracellular Heat Shock Proteins. Journal of Alzheimer's Disease, 2018, 63, 927-934.	1.2	9
47	The transition from a rural to an urban environment alters expression of the human Ebola virus receptor Neiman-Pick C1: implications for the current epidemic in West Africa. Cell Stress and Chaperones, 2015, 20, 203-206.	1.2	7
48	The Contribution of the Omentum to the Outcome From Sepsis: An Experimental Animal Study. Shock, 2019, 52, 604-611.	1.0	7
49	The transition from a rural to an urban environment in Africa alters G protein-coupled receptor signaling. Medical Hypotheses, 2016, 95, 49-53.	0.8	6
50	Do Not Blame the Rodent for the Failure of Developing Sepsis Therapies. Shock, 2020, 54, 631-632.	1.0	6
51	Differential expression of nuclear genes encoding mitochondrial proteins from urban and rural populations in Morocco. Cell Stress and Chaperones, 2020, 25, 847-856.	1.2	5
52	New insights on human Hsp70-escort protein 1: Chaperone activity, interaction with liposomes, cellular localizations and HSPA's self-assemblies remodeling. International Journal of Biological Macromolecules, 2021, 182, 772-784.	3.6	4
53	Nitrendipine, an antihypertensive alpha calcium channel blocker, is cytotoxic to neuroblastoma cells. Molecular and Cellular Toxicology, 2019, 15, 469-475.	0.8	2
54	Human urine exosomes: Another important member of the liquid biopsy family. Methods in Enzymology, 2020, 645, 195-208.	0.4	1

ANTONIO DE MAIO

#	Article	IF	CITATIONS
55	Regulation of the Nfkbiz Gene and Its Protein Product IkBζ in Animal Models of Sepsis and Endotoxic Shock. Infection and Immunity, 2021, 89, .	1.0	1
56	Reply to "Bacterial Proliferation May Be the Key Component of Sepsis Mortality― Infection and Immunity, 2018, 86, .	1.0	0
57	First Virtual International Congress on Cellular and Organismal Stress Responses, November 5–6, 2020. Cell Stress and Chaperones, 2021, 26, 289-295.	1.2	0
58	Hsp70 Associates with Lipid Membranes as Part of the Extracellular Export Mechanism. FASEB Journal, 2015, 29, 886.2.	0.2	0
59	Reply to Moldawer, Darden, and Efron's Reply to "Do Not Blame the Rodent for the Failure of Developing Sepsis Therapiesâ€: Shock, 2021, 56, 151-152.	1.0	0