Ju-young Shin

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3123288/publications.pdf
Version: 2024-02-01

| 34 | citations |
| :---: | :---: | :---: | :---: | :---: |
| papers | |
| all docs | |

Heterogeneous mixture distributions for modeling wind speed, application to the UAE. Renewable 4.3 57
$1 \quad \begin{aligned} & \text { Heterogeneous mixture dis } \\ & \text { Energy, 2016, 91, 40-52. }\end{aligned}$Probability Distributions for a Quantile Mapping Technique for a Bias Correction of Precipitation1.253Data: A Case Study to Precipitation Data Under Climate Change. Water (Switzerland), 2019, 11, 1475.
Deep Learning-Based Maximum Temperature Forecasting Assisted with Meta-Learning forMeteorology, 2020, 281, 107858.$10 \quad$ Allergenic Pollen Calendar in Korea Based on Probability Distribution Models and Up-to-DateObservations. Allergy, Asthma and Immunology Research, 2020, 12, 259.
Meta-heuristic maximum likelihood parameter estimation of the mixture normal distribution for
11 hydro-meteorological variables. Stochastic Environmental Research and Risk Assessment, 2014, 28,
A new approach for river network classification based on the beta distribution of tributary junction
angles. Journal of Hydrology, 2019,572, 66-74.
$14 \begin{aligned} & \text { Heterogeneous Mixture Distributions for Modeling Multisource Extreme Rainfalls*. Journal of } \\ & \text { Hydrometeorology, 2015, 16, 2639-2657. }\end{aligned}$ Hydrometeorology, 2015, 16, 2639-2657.

19	Event-Based Heat-Related Risk Assessment Model for South Korea Using Maximum Perceived Temperature, Wet-Bulb Clobe Temperature, and Air Temperature Data. International Journal of Environmental Research and Public Health, 2020, 17, 2631.	1.2	13
20	Longấ€erm trend and variability of surface humidity from 1973 to 2018 in South Korea. International Journal of Climatology, 2021, 41, 4215-4235.	1.5	13
21	Outdoor thermal stress changes in South Korea: Increasing inter-annual variability induced by different trends of heat and cold stresses. Science of the Total Environment, 2022, 805, 150132.	3.9	13
22	Assessing the Applicability of Random Forest, Stochastic Gradient Boosted Model, and Extreme Learning Machine Methods to the Quantitative Precipitation Estimation of the Radar Data: A Case Study to Gwangdeoksan Radar, South Korea, in 2018. Advances in Meteorology, 2019, 2019, 1-17.	0.6	11
23	Regional frequency analysis of extreme precipitation based on a nonstationary population index flood method. Advances in Water Resources, 2020, 146, 103757.	1.7	11
24	Leaf Wetness Duration Models Using Advanced Machine Learning Algorithms: Application to Farms in Gyeonggi Province, South Korea. Water (Switzerland), 2019, 11, 1878.	1.2	8
25	Prediction of Leaf Wetness Duration Using Geostationary Satellite Observations and Machine Learning Algorithms. Remote Sensing, 2020, 12, 3076.	1.8	7
26	Intensity-duration-frequency relationship of WBGT extremes using regional frequency analysis in South Korea. Environmental Research, 2020, 190, 109964.	3.7	7
27	Selecting Climate Models to Determine Future Extreme Rainfall Quantiles. Korean Society of Hazard Mitigation, 2019, 19, 55-69.	0.1	6

$29 \quad$| Improvement of Extreme Value Modeling for Extreme Rainfall Using Large-Scale Climate Modes and |
| :--- |
| Considering Model Uncertainty. Water (Switzerland), 2022, 14, 478. |\quad| Determination of thermal sensation levels for Koreans based on perceived temperature and climate |
| :--- |
| chamber experiments with hot and humid settings. International Journal of Biometeorology, 2022, , 1. |\quad| High-resolution wind speed forecast system coupling numerical weather prediction and machine |
| :--- |
| learning for agricultural studies â€" a case study from South Korea. International Journal of |
| Biometeorology, 2022, 66, 1429-1443. |

