Ju-young Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3123288/publications.pdf

Version: 2024-02-01

516215 610482 34 656 16 24 citations h-index g-index papers 35 35 35 675 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heterogeneous mixture distributions for modeling wind speed, application to the UAE. Renewable Energy, 2016, 91, 40-52.	4.3	57
2	Probability Distributions for a Quantile Mapping Technique for a Bias Correction of Precipitation Data: A Case Study to Precipitation Data Under Climate Change. Water (Switzerland), 2019, 11, 1475.	1.2	53
3	Monthly Precipitation Forecasting with a Neuro-Fuzzy Model. Water Resources Management, 2012, 26, 4467-4483.	1.9	47
4	Deep Learning-Based Maximum Temperature Forecasting Assisted with Meta-Learning for Hyperparameter Optimization. Atmosphere, 2020, 11, 487.	1.0	46
5	Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition. Journal of Hydrology, 2018, 557, 726-739.	2.3	44
6	Stochastic simulation on reproducing long-term memory of hydroclimatological variables using deep learning model. Journal of Hydrology, 2020, 582, 124540.	2.3	42
7	Spatial and temporal variations in rainfall erosivity and erosivity density in South Korea. Catena, 2019, 176, 125-144.	2.2	40
8	The Use of Large-Scale Climate Indices in Monthly Reservoir Inflow Forecasting and Its Application on Time Series and Artificial Intelligence Models. Water (Switzerland), 2019, 11, 374.	1.2	26
9	Seasonal forecasting of daily mean air temperatures using a coupled global climate model and machine learning algorithm for field-scale agricultural management. Agricultural and Forest Meteorology, 2020, 281, 107858.	1.9	26
10	Allergenic Pollen Calendar in Korea Based on Probability Distribution Models and Up-to-Date Observations. Allergy, Asthma and Immunology Research, 2020, 12, 259.	1.1	26
11	Meta-heuristic maximum likelihood parameter estimation of the mixture normal distribution for hydro-meteorological variables. Stochastic Environmental Research and Risk Assessment, 2014, 28, 347-358.	1.9	24
12	The Spatial and Temporal Structure of Extreme Rainfall Trends in South Korea. Water (Switzerland), 2017, 9, 809.	1.2	21
13	A new approach for river network classification based on the beta distribution of tributary junction angles. Journal of Hydrology, 2019, 572, 66-74.	2.3	19
14	Heterogeneous Mixture Distributions for Modeling Multisource Extreme Rainfalls*. Journal of Hydrometeorology, 2015, 16, 2639-2657.	0.7	18
15	Ensembleâ€Based Neural Network Modeling for Hydrologic Forecasts: Addressing Uncertainty in the Model Structure and Input Variable Selection. Water Resources Research, 2020, 56, e2019WR026262.	1.7	18
16	Regional quantile delta mapping method using regional frequency analysis for regional climate model precipitation. Journal of Hydrology, 2021, 596, 125685.	2.3	17
17	Bias correction of RCM outputs using mixture distributions under multiple extreme weather influences. Theoretical and Applied Climatology, 2019, 137, 201-216.	1.3	15
18	A Novel Statistical Method to Temporally Downscale Wind Speed Weibull Distribution Using Scaling Property. Energies, 2018, 11, 633.	1.6	13

#	Article	IF	CITATIONS
19	Event-Based Heat-Related Risk Assessment Model for South Korea Using Maximum Perceived Temperature, Wet-Bulb Globe Temperature, and Air Temperature Data. International Journal of Environmental Research and Public Health, 2020, 17, 2631.	1.2	13
20	Longâ€ŧerm trend and variability of surface humidity from 1973 to 2018 in South Korea. International Journal of Climatology, 2021, 41, 4215-4235.	1.5	13
21	Outdoor thermal stress changes in South Korea: Increasing inter-annual variability induced by different trends of heat and cold stresses. Science of the Total Environment, 2022, 805, 150132.	3.9	13
22	Assessing the Applicability of Random Forest, Stochastic Gradient Boosted Model, and Extreme Learning Machine Methods to the Quantitative Precipitation Estimation of the Radar Data: A Case Study to Gwangdeoksan Radar, South Korea, in 2018. Advances in Meteorology, 2019, 2019, 1-17.	0.6	11
23	Regional frequency analysis of extreme precipitation based on a nonstationary population index flood method. Advances in Water Resources, 2020, 146, 103757.	1.7	11
24	Leaf Wetness Duration Models Using Advanced Machine Learning Algorithms: Application to Farms in Gyeonggi Province, South Korea. Water (Switzerland), 2019, 11, 1878.	1.2	8
25	Prediction of Leaf Wetness Duration Using Geostationary Satellite Observations and Machine Learning Algorithms. Remote Sensing, 2020, 12, 3076.	1.8	7
26	Intensity-duration-frequency relationship of WBGT extremes using regional frequency analysis in South Korea. Environmental Research, 2020, 190, 109964.	3.7	7
27	Selecting Climate Models to Determine Future Extreme Rainfall Quantiles. Korean Society of Hazard Mitigation, 2019, 19, 55-69.	0.1	6
28	Emulators of a Physical Model for Estimating Leaf Wetness Duration. Agronomy, 2021, 11, 216.	1.3	5
29	Improvement of Extreme Value Modeling for Extreme Rainfall Using Large-Scale Climate Modes and Considering Model Uncertainty. Water (Switzerland), 2022, 14, 478.	1.2	3
30	Determination of thermal sensation levels for Koreans based on perceived temperature and climate chamber experiments with hot and humid settings. International Journal of Biometeorology, 2022, , 1.	1.3	3
31	High-resolution wind speed forecast system coupling numerical weather prediction and machine learning for agricultural studies — a case study from South Korea. International Journal of Biometeorology, 2022, 66, 1429-1443.	1.3	2
32	Modified Maximum Pseudo Likelihood Method of Copula Parameter Estimation for Skewed Hydrometeorological Data. Water (Switzerland), 2020, 12, 1182.	1.2	1
33	Frequency Analysis of Annual Maximum Wind Speed in Korea using Mixture Distribution. Korean Society of Hazard Mitigation, 2018, 18, 61-69.	0.1	1
34	Determining multiple thresholds for thermal health risk levels using the segmented Poisson regression model. Scientific Online Letters on the Atmosphere, 2022, 18, .	0.6	0