Jaime Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3123134/publications.pdf

Version: 2024-02-01

136950 138484 3,306 64 32 58 citations h-index g-index papers 66 66 66 7262 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	On the Single Wall Carbon Nanotube Surface Plasmon Stability. EPJ Web of Conferences, 2020, 233, 05009.	0.3	1
2	Field-dependent electrical properties of carbon nanotubes from first-principles: negative differential conductance, current oscillations and molecular sensing. Journal of Physics Condensed Matter, 2020, 32, 135502.	1.8	1
3	Theoretical Investigation of Single-Molecule Sensing Using Nanotube-Enhanced Circular Dichroism. Journal of Physical Chemistry A, 2018, 122, 5666-5670.	2.5	1
4	High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Composites Science and Technology, 2017, 153, 241-252.	7.8	86
5	Finite-Size Effects in the Absorption Spectra of a Single-Wall Carbon Nanotube. Journal of Physical Chemistry C, 2016, 120, 18268-18274.	3.1	9
6	Strong increase of the dielectric response of carbon nanotube/poly(vinylidene fluoride) composites induced by carbon nanotube type and pre-treatment. Composites Part B: Engineering, 2016, 93, 310-316.	12.0	34
7	An effective algorithm for computing allâ€ŧerminal reliability bounds. Networks, 2015, 66, 282-295.	2.7	18
8	Search for \$\$W' ightarrow tb ightarrow qqbb\$\$ W ′ → t b → q q b b decays in \$\$pp\$\$ p p collisions at \$\$sqrt{s}\$\$ s Â=Ā8ÂTeV with the ATLAS detector. European Physical Journal C, 2015, 75, 165.	3.9	35
9	Measurement of the top-quark mass in the fully hadronic decay channel from ATLAS data at $$$ sqrt{s}=7mathrm{,TeV}\$\$ s = 7 TeV. European Physical Journal C, 2015, 75, 158.	3.9	17
10	Measurement of the production and lepton charge asymmetry of $\$W$ \$ W bosons in Pb+Pb collisions at $\$$ mathbf {sqrt{mathbf {s}_{mathrm {mathbf {NN}}}}=2.76;TeV}\$\$ s NN = 2.76 TeV with the ATLAS detector. European Physical Journal C, 2015, 75, 23.	3.9	41
11	Jet energy measurement and its systematic uncertainty in proton–proton collisions at \$\$sqrt{s}=7\$\$ s = 7 ÂTeV with the ATLAS detector. European Physical Journal C, 2015, 75, 17.	3.9	268
12	Search for invisible particles produced in association with single-top-quarks in proton–proton collisions at \$\$sqrt{s}=mathrm {8~TeV}\$\$ s = 8 TeV with the ATLAS detector. European Physical Journal C, 2015, 75, 79.	3.9	30
13	Search for resonant diboson production in the \$\$mathrm {ell ell }qar{q}\$\$ â," â," q q \hat{A}^- final state in \$\$pp\$\$ p p collisions at \$\$sqrt{s} = 8\$\$ s = 8 ÂTeV with the ATLAS detector. European Physical Journal C, 2015, 75, 69.	3.9	74
14	Measurements of the \$\$W\$\$ W production cross sections in association with jets with the ATLAS detector. European Physical Journal C, 2015, 75, 82.	3.9	92
15	Search for dark matter in events with heavy quarks and missing transverse momentum in \$\$pp\$\$ p p collisions with the ATLAS detector. European Physical Journal C, 2015, 75, 92.	3.9	77
16	Search for production of $\$WW/WZ$ \$\$ W W / W Z resonances decaying to a lepton, neutrino and jets in $\$pp$ \$\$ p p collisions at $\$sqrt$ s}=8\$\$ s = 8 ÂTeV with the ATLAS detector. European Physical Journal C, 2015, 75, 209.	3.9	79
17	Performance of the ATLAS muon trigger in pp collisions at \$\$sqrt{s}=8\$\$ s = 8 TeV. European Physical Journal C, 2015, 75, 120.	3.9	62
18	Determination of spin and parity of the Higgs boson in the \$\$WW^*ightarrow e u mu u \$\$ W W \hat{a} — \hat{a} †' e \hat{l} ½ \hat{l} ½ decay channel with the ATLAS detector. European Physical Journal C, 2015, 75, 231.	3.9	21

#	Article	IF	CITATIONS
19	Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $\frac{s}{s}=8~$ s = 8 TeV with the ATLAS detector. European Physical Journal C, 2015, 75, 299.	3.9	238
20	Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector. European Physical Journal C, 2015, 75, 335.	3.9	95
21	Measurement of the top quark mass in the \$\$tar{t}ightarrow ext{ lepton+jets } \$\$ t t $\hat{A}^ \hat{a}$ †' lepton+jets and \$\$tar{t}ightarrow ext{ dilepton } \$\$ t t $\hat{A}^ \hat{a}$ †' dilepton channels using \$\$sqrt{s}=7\$\$ s = 7 \hat{A} \$\${mathrm { TeV}}\$\$ TeV ATLAS data. European Physical Journal C, 2015, 75, 330.	3.9	52
22	Co-Extrusion Layer Multiplication of Rheologically Mismatched Polymers: A Novel Processing Route. International Polymer Processing, 2015, 30, 317-330.	0.5	16
23	Search for production of (WW/WZ) resonances decaying to a lepton, neutrino and jets in (pp) collisions at (sqrt $\{s\}=8$) TeV with the ATLAS detector., 2015, 75, 1.		1
24	Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $(\sqrt{s}=8-)$ TeV with the ATLAS detector., 2015, 75, 1.		2
25	Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data. European Physical Journal C, 2014, 74, 3130.	3.9	213
26	Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in $pp $ p collisions at $s=7,mathrm{TeV}$ s = 7 TeV using the ATLAS detector. European Physical Journal C, 2014, 74, 3117.	3.9	40
27	A measurement of the ratio of the production cross sections for \$\$W\$\$ W and \$\$Z\$\$ Z bosons in association with jets with the ATLAS detector. European Physical Journal C, 2014, 74, 3168.	3.9	23
28	Measurement of the $\frac{t}{s}$ t t \hat{A}^- production cross-section using $\frac{1}{4}$ events with $\frac{5}{s}$ + tagged jets in $\frac{1}{4}$ events with European Physical Journal C, 2014, 74, 3109.	3.9	143
29	An algorithm for computing all-terminal reliability bounds. , 2014, , .		6
30	Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. European Physical Journal C, 2014, 74, 1.	3.9	172
31	Search for contact interactions and large extra dimensions in the dilepton channel using proton–proton collisions at \$\$sqrt{s}~=\$\$ s = Â8ÂTeV with the ATLAS detector. European Physical Journal C, 2014, 74, 3134.	3.9	48
32	Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at $\frac{5}{9} = 2.76$ NN = 2.76 ÂTeV with the ATLAS detector. European Physical Journal C, 2014, 74, 3157.	3.9	68
33	Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in $production in pp p collisions at $sqrt{s}=7$$ s = 7 TeV with the ATLAS detector. European Physical Journal C, 2014, 74, 3195.$	3.9	46
34	Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styreneâ€"butadieneâ€"styrene composites for large strain sensor applications. Composites Part B: Engineering, 2014, 61, 136-146.	12.0	166
35	Effect of cylindrical filler aggregation on the electrical conductivity of composites. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2985-2988.	2.1	15
36	Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton–proton collision data. European Physical Journal C, 2014, 74, 2941.	3.9	204

#	Article	IF	Citations
37	Light-quark and gluon jet discrimination in $pp $ p collisions at $p $ and gluon jet discrimination in $p $ p collisions at $p $ and gluon jet discrimination in $p $ p collisions at $p $ and $p $ and $p $ are Light-quark and gluon jet discrimination in $p $ and $p $ are Light-quark and gluon jet discrimination in $p $ and $p $ are Light-quark	3.9	77
38	Sharing of classical and quantum correlations via XY interaction. Annals of Physics, 2014, 348, 23-31.	2.8	1
39	Measurement of the (toverline $\{t\}$) production cross-section using (emu) events with (b)-tagged jets in (pp) collisions at (sqrt $\{s\}$ =7) and 8 TeV with the ATLAS detector., 2014, 74, 1.		2
40	Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene–butadiene–styrene/multiwall carbon nanotubes composites. Journal of Materials Science, 2013, 48, 1172-1179.	3.7	65
41	Rheological and electrical analysis in carbon nanofiber reinforced polypropylene composites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 207-213.	2.1	14
42	Distortion of Interfaces in a Multilayer Polymer Co-extrusion Feedblock. International Polymer Processing, 2013, 28, 274-280.	0.5	5
43	Critical behavior of a three-dimensional hardcore-cylinder composite system. Physical Review E, 2012, 85, 021115.	2.1	4
44	On the origin of the electrical response of vapor grown carbon nanofiber + epoxy composites. E-Polymers, 2012, 12, .	3.0	1
45	The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) composites. Journal of Materials Science, 2012, 47, 8103-8111.	3.7	32
46	Temperature dependence of the electrical conductivity of vapor grown carbon nanofiber/epoxy composites with different filler dispersion levels. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3290-3294.	2.1	7
47	Modeling Carbon Nanotube Electrical Properties in CNT/Polymer Composites. Advanced Structured Materials, 2012, , 287-295.	0.5	0
48	Comparative analyses of the electrical properties and dispersion level of VGCNF and MWCNT: Epoxy composites. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1253-1261.	2.1	4
49	The role of disorder on the AC and DC electrical conductivity of vapour grown carbon nanofibre/epoxy composites. Composites Science and Technology, 2012, 72, 243-247.	7.8	24
50	Applying complex network theory to the understanding of high-aspect-ratio carbon-filled composites. Europhysics Letters, 2011, 93, 37005.	2.0	24
51	The influence of the dispersion method on the electrical properties of vapor-grown carbon nanofiber/epoxy composites. Nanoscale Research Letters, 2011, 6, 370.	5.7	20
52	The influence of matrix mediated hopping conductivity, filler concentration, aspect ratio and orientation on the electrical response of carbon nanotube/polymer nanocomposites. Composites Science and Technology, 2011, 71, 643-646.	7.8	28
53	Poly(vinylidene fluoride-trifluoroethylene) (72/28) interconnected porous membranes obtained by crystallization from solution. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	12
54	Backup path calculation in diverse routing considering shared risk link groups., 2011,, 2623-2630.		0

#	Article	IF	CITATIONS
55	A Complex Network Based Simulation Approach to Predict the Electrical Properties of Nanocomposites. Journal of Nanoscience and Nanotechnology, 2010, 10, 2451-2457.	0.9	3
56	Influence of fiber aspect ratio and orientation on the dielectric properties of polymer-based nanocomposites. Journal of Materials Science, 2010, 45, 268-270.	3.7	15
57	Poly[(vinylidene fluoride)â€∢i>coàê€trifluoroethylene] Membranes Obtained by Isothermal Crystallization from Solution. Macromolecular Materials and Engineering, 2010, 295, 523-528.	3.6	38
58	The dominant role of tunneling in the conductivity of carbon nanofiberâ€epoxy composites. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 407-410.	1.8	35
59	Applications of the Graph Theory to the Prediction of Electrical and Dielectric Properties of Nano-filled Polymers. Composite Interfaces, 2010, 17, 407-422.	2.3	4
60	The Role of Solvent Evaporation in the Microstructure of Electroactive \hat{I}^2 -Poly(Vinylidene Fluoride) Membranes Obtained by Isothermal Crystallization. Soft Materials, 2010, 9, 1-14.	1.7	40
61	The piezoresistive effect in polypropyleneâ€"carbon nanofibre composites obtained by shear extrusion. Smart Materials and Structures, 2010, 19, 065013.	3.5	52
62	A Computational Method to Explore the Breakdown Process of Conductive Fillers in a Lossless Dielectric Nanocomposite., 2009,,.		2
63	Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments. Nanotechnology, 2009, 20, 035703.	2.6	102
64	The effect of fibre concentration on the $\hat{l}\pm$ to \hat{l}^2 -phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) composites. Carbon, 2009, 47, 2590-2599.	10.3	124