Peter A Cattini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3122871/publications.pdf

Version: 2024-02-01

567281 501196 37 807 15 28 citations h-index g-index papers 37 37 37 701 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neurogenesis in the Maternal Rodent Brain: Impacts of Gestation-Related Hormonal Regulation, Stress, and Obesity. Neuroendocrinology, 2022, 112, 702-722.	2.5	1
2	A potential role for insulin treatment during pregnancy in reducing postpartum psychological distress in maternal obesity: an administrative population health study. BMC Women's Health, 2021, 21, 117.	2.0	2
3	Dexamethasone Rescues an Acute High-Fat Diet-Induced Decrease in Human Growth Hormone Gene Expression in Male Partially Humanized CD-1 Mice. DNA and Cell Biology, 2021, 40, 543-552.	1.9	1
4	Effects of high fat diet-induced obesity and pregnancy on prepartum and postpartum maternal mouse behavior. Psychoneuroendocrinology, 2021, 126, 105147.	2.7	10
5	Elimination of endogenous high molecular weight FGF2 prevents pressure-overload-induced systolic dysfunction, linked to increased FGFR1 activity and NR1D1 expression. Cell and Tissue Research, 2021, 385, 753-768.	2.9	7
6	Obesity and regulation of human placental lactogen production in pregnancy. Journal of Neuroendocrinology, 2020, 32, e12859.	2.6	18
7	Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo. Endocrine Connections, 2020, 9, 1135-1147.	1.9	3
8	Negative Effects of Cyclic Palmitate Treatment on Glucose Responsiveness and Insulin Production in Mouse Insulinoma Min6 Cells Are Reversible. DNA and Cell Biology, 2019, 38, 395-403.	1.9	0
9	Elimination or neutralization of endogenous high-molecular-weight FGF2 mitigates doxorubicin-induced cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H279-H288.	3.2	11
10	Cardiac <i>Fgf-16</i> Expression Supports Cardiomyocyte Survival and Increases Resistance to Doxorubicin Cytotoxicity. DNA and Cell Biology, 2018, 37, 866-877.	1.9	5
11	A useful model to compare human and mouse growth hormone gene chromosomal structure, expression and regulation, and immune tolerance of human growth hormone analogues. Growth Hormone and IGF Research, 2018, 42-43, 58-65.	1.1	11
12	Chromosomal architecture and placental expression of the human growth hormone gene family are targeted by pre-pregnancy maternal obesity. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E435-E445.	3.5	15
13	Expression of the Cardiac Maintenance and Survival Factor FGF-16 Gene Is Regulated by Csx/Nkx2.5 and Is an Early Target of Doxorubicin Cardiotoxicity. DNA and Cell Biology, 2017, 36, 117-126.	1.9	9
14	Fibroblast growth factor-2-mediated protection of cardiomyocytes from the toxic effects of doxorubicin requires the mTOR/Nrf-2/HO-1 pathway. Oncotarget, 2017, 8, 87415-87430.	1.8	25
15	Evidence for a Circadian Effect on the Reduction of Human Growth Hormone Gene Expression in Response to Excess Caloric Intake. Journal of Biological Chemistry, 2016, 291, 13823-13833.	3.4	20
16	Expression of Placental Members of the Human Growth Hormone Gene Family Is Increased in Response to Sequential Inhibition of DNA Methylation and Histone Deacetylation. BioResearch Open Access, 2015, 4, 446-456.	2.6	3
17	Heart-specific expression of FGF-16 and a potential role in postnatal cardioprotection. Cytokine and Growth Factor Reviews, 2015, 26, 59-66.	7.2	17
18	Identification of three novel <i>FGF16</i> mutations in Xâ€linked recessive fusion of the fourth and fifth metacarpals and possible correlation with heart disease. Molecular Genetics & Enomic Medicine, 2014, 2, 402-411.	1.2	17

#	Article	IF	CITATIONS
19	Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus. Journal of Clinical Investigation, 2014, 124, 5002-5012.	8.2	12
20	CCAAT-enhancer-binding Protein \hat{l}^2 (C/EBP \hat{l}^2) and Downstream Human Placental Growth Hormone Genes Are Targets for Dysregulation in Pregnancies Complicated by Maternal Obesity. Journal of Biological Chemistry, 2013, 288, 22849-22861.	3.4	20
21	Negative Regulation of Human Growth Hormone Gene Expression by Insulin Is Dependent on Hypoxia-inducible Factor Binding in Primary Non-tumor Pituitary Cells. Journal of Biological Chemistry, 2012, 287, 33282-33292.	3.4	15
22	A Differential Effect of FGFâ€2 on Resistance to Doxorubicinâ€Induced Necrotic Versus Apoptoticâ€Like Damage in Neonatal Rat Cardiomyocyte Cultures. FASEB Journal, 2012, 26, 1137.16.	0.5	0
23	Enhancer-Blocking Activity Is Associated with Hypersensitive Site V Sequences in the Human Growth Hormone Locus Control Region. DNA and Cell Biology, 2011, 30, 995-1005.	1.9	7
24	Transgenic mice expressing the human growth hormone gene provide a model system to study human growth hormone synthesis and secretion in non-tumor-derived pituitary cells: Differential effects of dexamethasone and thyroid hormone. Molecular and Cellular Endocrinology, 2011, 345, 48-57.	3.2	26
25	Hepatocyte Nuclear Factor-3α Binding at P Sequences of the Human Growth Hormone Locus Is Associated with Pituitary Repressor Function. Molecular Endocrinology, 2006, 20, 598-607.	3.7	20
26	Regulation of the Human Growth Hormone Gene Family: Possible Role for Pit-1 in Early Stages of Pituitary-Specific Expression and Repression. Neuroendocrinology, 2006, 83, 145-153.	2.5	15
27	Title is missing!. Molecular and Cellular Biochemistry, 2003, 246, 111-116.	3.1	11
28	Cloning and bacterial expression of postnatal mouse heart FGF-16. Molecular and Cellular Biochemistry, 2003, 242, 65-70.	3.1	13
29	Cloning of the Rat Fibroblast Growth Factor-2 Promoter Region and Its Response to Mitogenic Stimuli in Glioma C6 Cells. Journal of Neurochemistry, 2002, 68, 898-908.	3.9	21
30	Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1039-H1050.	3.2	66
31	A member of the nuclear factor-1 family is involved in the pituitary repression of the human placental growth hormone genes. Biochemical Journal, 2001, 354, 387-395.	3.7	20
32	CUG-initiated FGF-2 induces chromatin compaction in cultured cardiac myocytes and in vitro. Journal of Cellular Physiology, 2001, 186, 457-467.	4.1	22
33	A Role for A/T-Rich Sequences and Pit-1/GHF-1 in a Distal Enhancer Located in the Human Growth Hormone Locus Control Region with Preferential Pituitary Activity in Culture and Transgenic Mice. Molecular Endocrinology, 1999, 13, 1249-1266.	3.7	45
34	A Role for A/T-Rich Sequences and Pit-1/GHF-1 in a Distal Enhancer Located in the Human Growth Hormone Locus Control Region with Preferential Pituitary Activity in Culture and Transgenic Mice. Molecular Endocrinology, 1999, 13, 1249-1266.	3.7	10
35	Title is missing!. Molecular and Cellular Biochemistry, 1997, 176, 89-97.	3.1	16
36	Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene Molecular Endocrinology, 1993, 7, 23-36.	3.7	238

#	Article	IF	CITATIONS
37	Regulated expression of chimaeric genes containing the $5\hat{a}\in^2$ -flanking regions of human growth hormone-related genes in transiently transfected rat anterior pituitary tumor cells. Nucleic Acids Research, 1987, 15, 1297-1309.	14.5	55