Rachit Khare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3122855/publications.pdf

Version: 2024-02-01

1040056 1199594 14 571 9 12 citations h-index g-index papers 16 16 16 575 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	A mechanistic basis for the effects of crystallite size on light olefin selectivity in methanol-to-hydrocarbons conversion on MFI. Journal of Catalysis, 2015, 321, 23-31.	6.2	153
2	A descriptor for the relative propagation of the aromatic- and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5. Journal of Catalysis, 2013, 303, 135-140.	6.2	144
3	Mechanistic studies of methanol-to-hydrocarbons conversion on diffusion-free MFI samples. Journal of Catalysis, 2015, 329, 218-228.	6.2	71
4	A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5. Journal of Catalysis, 2017, 348, 300-305.	6.2	67
5	Importance of Methane Chemical Potential for Its Conversion to Methanol on Cuâ€Exchanged Mordenite. Chemistry - A European Journal, 2020, 26, 7563-7567.	3.3	31
6	Highly Active and Selective Sites for Propane Dehydrogenation in Zeolite Ga-BEA. Journal of the American Chemical Society, 2022, 144, 12347-12356.	13.7	29
7	Implications of Cofeeding Acetaldehyde on Ethene Selectivity in Methanol-to-Hydrocarbons Conversion on MFI and Its Mechanistic Interpretation. ACS Catalysis, 2016, 6, 2314-2331.	11.2	25
8	Activity of Cu–Al–Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites. Jacs Au, 2021, 1, 1412-1421.	7.9	21
9	Speciation of Cu-Oxo Clusters in Ferrierite for Selective Oxidation of Methane to Methanol. Chemistry of Materials, 2022, 34, 4355-4363.	6.7	11
10	Zeoliteâ€Stabilized Di―and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites. Angewandte Chemie - International Edition, 2021, 60, 9301-9305.	13.8	10
11	Development of photochemical and electrochemical cells for <i>operando</i> X-ray absorption spectroscopy during photocatalytic and electrocatalytic reactions. Physical Chemistry Chemical Physics, 2020, 22, 18891-18901.	2.8	6
12	Importance of Methane Chemical Potential for Its Conversion to Methanol on Cuâ€exchanged Mordenite. Chemistry - A European Journal, 2020, 26, 7515-7515.	3.3	3
13	Zeoliteâ€Stabilized Di―and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites. Angewandte Chemie, 2021, 133, 9387-9391.	2.0	0
14	Di- and Tetrameric Molybdenum Sulfide Clusters Activate and Stabilize Dihydrogen as Hydrides. Jacs Au, 2022, 2, 613-622.	7.9	O