Zhengjie Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3122749/publications.pdf Version: 2024-02-01

ZHENCHE CHEN

#	Article	IF	CITATIONS
1	The Effect of Silica and Reducing Agent on the Contents of Impurities in Silicon Produced. Silicon, 2022, 14, 2779-2792.	3.3	11
2	Effect of Silica and Carbon-Reducing Agents on Ni and Ti Impurities during Silicon Production. Silicon, 2022, 14, 4925-4934.	3.3	4
3	Effect of Carbonaceous Reducers on Carbon Emission during Silicon Production in SAF of 8.5 MVA and 12.5 MVA. Silicon, 2022, 14, 7123-7133.	3.3	1
4	Synergistic Effect of Distillers' Grains and Petroleum Coke as Reducing Agent on the Carbothermic Reduction of Silica. Silicon, 2022, 14, 7809-7818.	3.3	2
5	Vacuum-assisted and alkali roasting for desulfurization of petroleum coke. Journal of Cleaner Production, 2022, 332, 130052.	9.3	4
6	Effect of the reactive blend conditions on the thermal properties of waste biomass and soft coal as a reducing agent for silicon production. Renewable Energy, 2022, 187, 302-319.	8.9	8
7	Effect of carbon material composition on the energy consumption in 22.5 MVA silicon furnace. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 1036-1044.	1.6	1
8	The effect of Ni on Fe and Al impurities by MIVM model for the silicon production. Energy, 2022, 254, 124459.	8.8	9
9	Influence of the Grinding Media Applying in the Soft Coal and Waste Biomass on the Carbothermic Reduction Process of Silica. Silicon, 2021, 13, 3963-3970.	3.3	5
10	Thermodynamics and kinetics of the carbothermal reduction of aluminum sulfate. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 71-78.	1.6	3
11	Effects of grinding media on the material properties and strengthening mechanism of silicon production. Journal of Cleaner Production, 2021, 278, 123438.	9.3	8
12	Overview of Current Phosphoric Acid Production Processes and a New Idea of Kiln Method. Mini-Reviews in Organic Chemistry, 2021, 18, 328-338.	1.3	4
13	A review of hydrometallurgy techniques for the removal of impurities from metallurgical-grade silicon. Hydrometallurgy, 2021, 201, 105553.	4.3	69
14	Effect of grinding media on the synergistic characteristics of coal and biomass for the carbothermal reduction of silica. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 594-603.	1.6	4
15	Effect of K2CO3 as an Additive Agent on the Carbothermic Reduction Process of Silicon Production. Silicon, 2020, 12, 1575-1584.	3.3	6
16	Silica, Alkali Carbonate and Alkali Rich Metal Ore as Additive Effect on the Carbothermic Reduction Process of Phosphorus Ore. Silicon, 2020, 12, 613-620.	3.3	4
17	Effect of AC as a reductant through the coupling treatment of microwave-assisted and alkali carbonate on silicon production. Journal of Alloys and Compounds, 2020, 817, 152737.	5.5	6
18	Study on kinetics of the pyrolysis process of aluminum sulfate. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 285-292.	1.6	3

ZHENGJIE CHEN

#	Article	IF	CITATIONS
19	Boron Removal from Industrial Silicon by Combined Slagging and Acid Leaching Treatment Technology. Jom, 2020, 72, 2670-2675.	1.9	13
20	The Additive Effect of K2CO3-NiSO4 on the Carbothermal Reduction Process of Phosphate Rock and SiO2. Silicon, 2020, 12, 1985-1994.	3.3	4
21	Clean and effective utilization of moldy peel as a biomass waste resource in the gasification process of petroleum coke. Sustainable Energy and Fuels, 2020, 4, 6096-6104.	4.9	5
22	Evaluating of the exergy efficiency of the silicon production process using artificial neural networks. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 756-766.	1.6	3
23	Concentration-Controlled and Phytic Acid-Assisted Synthesis of Self-Assembled LiFePO ₄ as Cathode Materials for Lithium-Ion Battery. Nano, 2020, 15, 2050003.	1.0	6
24	The Effect of K-feldspar and Silica as Fluxing Agent on the Production Process of Phosphorus Furnace. Silicon, 2019, 11, 233-239.	3.3	4
25	Novel and efficient purification of silicon through ultrasonic-Cu catalyzed chemical leaching. Ultrasonics Sonochemistry, 2019, 56, 474-480.	8.2	12
26	NiSO4 as Additive Effect on the Carbothermal Reduction Process of Phosphate Rock and SiO2. Silicon, 2019, 11, 2829-2836.	3.3	7
27	The effect of the carbonaceous materials properties on the energy consumption of silicon production in the submerged arc furnace. Journal of Cleaner Production, 2018, 191, 240-247.	9.3	27
28	Study of the Silica or K-feldspar as fluxing agent for the yellow phosphorus production. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 520-527.	1.6	3
29	Predicting the Electricity Consumption and the Exergetic Efficiency of a Submerged Arc Furnace with Raw Materials using an Artificial Neural Network. Silicon, 2018, 10, 603-608.	3.3	4
30	Influence of carbon material on the production process of different electric arc furnaces. Journal of Cleaner Production, 2018, 174, 17-25.	9.3	37
31	A Study of the Performance of Submerged Arc Furnace Smelting of Industrial Silicon. Silicon, 2018, 10, 1121-1127.	3.3	14
32	Studies on extraction of phosphorus from phosphate ore by electric furnace with different fluxing agents. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 141-148.	1.6	3
33	Structural Transformation of High-sulfur Petroleum Cokes with Additives after Heat Treatment. Journal of Chemical Engineering of Japan, 2018, 51, 848-854.	0.6	1
34	Effect of off-centered silicon ladle on the removal strength of aluminum and calcium impurities. Separation and Purification Technology, 2018, 201, 301-308.	7.9	3
35	Application of a Waste Carbon Material as the Carbonaceous Reductant During Silicon Production. Silicon, 2018, 10, 2409-2417.	3.3	5
36	Simple and High-Effective Purification of Metallurgical-Grade Silicon Through Cu-Catalyzed Chemical Leaching. Jom, 2018, 70, 2041-2047.	1.9	8

ZHENGJIE CHEN

#	Article	IF	CITATIONS
37	Thermodynamic Estimation of Silicon Tetrachloride to Trichlorosilane by a Low Temperature Hydrogenation Technique. Silicon, 2017, 9, 69-75.	3.3	14
38	Effects of potassium feldspar on slagging and fluxing in phosphorus produced via electric furnace. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 475-480.	1.6	15
39	Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE. Journal of Materials Science: Materials in Electronics, 2017, 28, 8510-8518.	2.2	17
40	Detailed vacuum-assisted desulfurization of high-sulfur petroleum coke. Separation and Purification Technology, 2017, 175, 115-121.	7.9	16
41	Effect of raw materials on the production process of the silicon furnace. Journal of Cleaner Production, 2017, 158, 359-366.	9.3	34
42	Research on surface nano-texturation and wet-chemical passivation of multi-crystalline silicon wafer. Journal of Materials Science: Materials in Electronics, 2017, 28, 18825-18834.	2.2	6
43	Experimental study of various fluxing agents in a phosphorus furnace. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 1048-1053.	1.6	3
44	Artificial neural network modeling for evaluating the power consumption of silicon production in submerged arc furnaces. Applied Thermal Engineering, 2017, 112, 226-236.	6.0	36
45	An Innovative Metal Ions Sensitive "Test Paper―Based on Virgin Nanoporous Silicon Wafer: Highly Selective to Copper(II). Scientific Reports, 2016, 6, 36654.	3.3	8
46	Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production. Energy, 2016, 116, 687-693.	8.8	35
47	Study on Si-P-Fe and Si-P-Al ternary System Interactions Applied by MIVM Model for the Process of Specific Actual Production. Silicon, 0, , 1.	3.3	1