Eric D Van Hullebusch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3122717/publications.pdf

Version: 2024-02-01

297 papers

14,726 citations

20817 60 h-index 28297 105 g-index

303 all docs

303 docs citations

times ranked

303

13323 citing authors

#	Article	IF	CITATIONS
1	Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Separation and Purification Technology, 2015, 156, 891-914.	7.9	449
2	Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chemical Engineering Journal, 2013, 228, 944-964.	12.7	448
3	Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. Journal of Hazardous Materials, 2016, 306, 149-174.	12.4	377
4	Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnology Advances, 2016, 34, 886-907.	11.7	338
5	Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 2021, 18, 3273-3294.	3 . 5	287
6	Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Science of the Total Environment, 2016, 563-564, 693-703.	8.0	284
7	Application of advanced oxidation processes for TNT removal: A review. Journal of Hazardous Materials, 2010, 178, 10-28.	12.4	276
8	Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Applied Microbiology and Biotechnology, 2010, 85, 1589-1599.	3.6	248
9	A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process. Journal of Materials Chemistry A, 2017, 5, 3655-3666.	10.3	237
10	Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environmental Science and Pollution Research, 2014, 21, 8493-8524.	5. 3	227
11	Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes - a review. Critical Reviews in Environmental Science and Technology, 2019, 49, 212-275.	12.8	219
12	Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) $\hat{a} \in A$ review. Journal of Hazardous Materials, 2019, 362, 467-481.	12.4	215
13	Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resources, Conservation and Recycling, 2018, 135, 296-312.	10.8	212
14	Metal immobilisation by biofilms: Mechanisms and analytical tools. Reviews in Environmental Science and Biotechnology, 2003, 2, 9-33.	8.1	205
15	Sub-stoichiometric titanium oxide (Ti4O7) as a suitable ceramic anode for electrooxidation of organic pollutants: A case study of kinetics, mineralization and toxicity assessment of amoxicillin. Water Research, 2016, 106, 171-182.	11.3	196
16	Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides – 1. Microbial Processes and Mechanisms Affecting Bioremediation of Metal Contamination and Influencing Metal Toxicity and Transport. Reviews in Environmental Science and Biotechnology, 2005, 4, 115-156.	8.1	183
17	Fungal pelleted reactors in wastewater treatment: Applications and perspectives. Chemical Engineering Journal, 2016, 283, 553-571.	12.7	183
18	A review of nature-based solutions for urban water management in European circular cities: a critical assessment based on case studies and literature. Blue-Green Systems, 2020, 2, 112-136.	2.0	183

#	Article	IF	CITATIONS
19	Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Management, 2016, 57, 149-157.	7.4	180
20	Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment. Applied Microbiology and Biotechnology, 2015, 99, 9883-9905.	3.6	177
21	Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes. Environmental Science & Environmental Science & 2015, 49, 12187-12196.	10.0	167
22	Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles. Environmental Science & Environmental Scien	10.0	158
23	Reuse options for coal fired power plant bottom ash and fly ash. Reviews in Environmental Science and Biotechnology, 2014, 13, 467-486.	8.1	152
24	Trace Metals in Anaerobic Granular Sludge Reactors: Bioavailability and Dosing Strategies. Engineering in Life Sciences, 2006, 6, 293-301.	3.6	146
25	A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study. Applied Catalysis B: Environmental, 2016, 180, 189-198.	20.2	141
26	Electrochemical mineralization of sulfamethoxazole over wide pH range using FellFellI LDH modified carbon felt cathode: Degradation pathway, toxicity and reusability of the modified cathode. Chemical Engineering Journal, 2018, 350, 844-855.	12.7	139
27	Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Research, 2008, 42, 2184-2194.	11.3	133
28	Fe(II)-mediated autotrophic denitrification: A new bioprocess for ironÂbioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters. International Biodeterioration and Biodegradation, 2017, 119, 631-648.	3.9	132
29	Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. Journal of Environmental Management, 2021, 290, 112627.	7.8	122
30	Adsorption of zinc by biogenic elemental selenium nanoparticles. Chemical Engineering Journal, 2015, 260, 855-863.	12.7	119
31	Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: Mineralization efficiency and modelling. Applied Catalysis B: Environmental, 2016, 194, 32-41.	20.2	119
32	Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. Journal of Environmental Management, 2015, 153, 40-47.	7.8	118
33	Comparison of three sequential extraction procedures to describe metal fractionation in anaerobic granular sludges. Talanta, 2005, 65, 549-558.	5.5	117
34	Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process – Study of soil washing recycling possibilities and environmental impact. Water Research, 2014, 48, 306-316.	11.3	108
35	Perspectives regarding the use of metallurgical slags as secondary metal resources – A review of bioleaching approaches. Journal of Environmental Management, 2018, 219, 138-152.	7.8	102
36	Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modelling. Chemosphere, 2006, 64, 1955-1962.	8.2	97

#	Article	IF	CITATIONS
37	Combination of anodic oxidation and biological treatment for the removal of phenanthrene and Tween 80 from soil washing solution. Chemical Engineering Journal, 2016, 306, 588-596.	12.7	97
38	Metal chalcogenide quantum dots: biotechnological synthesis and applications. RSC Advances, 2016, 6, 41477-41495.	3.6	94
39	Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology, 2021, 10, 791.	2.8	92
40	Sorption of cobalt and nickel on anaerobic granular sludges: isotherms and sequential extraction. Chemosphere, 2005, 58, 493-505.	8.2	89
41	Enhanced Phytoremediation: A Review of Low Molecular Weight Organic Acids and Surfactants Used as Amendments. Critical Reviews in Environmental Science and Technology, 2014, 44, 2531-2576.	12.8	89
42	Copper Metallurgical Slags – Current Knowledge and Fate: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 2424-2488.	12.8	89
43	Nitrate removal from groundwater: a review of natural and engineered processes. Journal of Water Supply: Research and Technology - AQUA, 2018, 67, 885-902.	1.4	89
44	Use of Sub-stoichiometric Titanium Oxide as a Ceramic Electrode in Anodic Oxidation and Electro-Fenton Degradation of the Beta-blocker Propranolol: Degradation Kinetics and Mineralization Pathway. Electrochimica Acta, 2017, 242, 344-354.	5.2	84
45	Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. Journal of Environmental Management, 2018, 211, 138-153.	7.8	84
46	Characterization of the Mineral Fraction Associated to Extracellular Polymeric Substances (EPS) in Anaerobic Granular Sludges. Environmental Science & Environmental Science & 2010, 44, 412-418.	10.0	83
47	Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues. Journal of Hazardous Materials, 2017, 324, 71-82.	12.4	83
48	Treatment of synthetic soil washing solutions containing phenanthrene and cyclodextrin by electro-oxidation. Influence of anode materials on toxicity removal and biodegradability enhancement. Applied Catalysis B: Environmental, 2014, 160-161, 666-675.	20.2	81
49	Electro-Fenton treatment of a complex pharmaceutical mixture: Mineralization efficiency and biodegradability enhancement. Chemosphere, 2020, 253, 126659.	8.2	78
50	Toward an accelerated biodeterioration test to understand the behavior of Portland and calcium aluminate cementitious materials in sewer networks. International Biodeterioration and Biodegradation, 2013, 84, 236-243.	3.9	77
51	Soil Washing/Flushing Treatments of Organic Pollutants Enhanced by Cyclodextrins and Integrated Treatments: State of the Art. Critical Reviews in Environmental Science and Technology, 2014, 44, 705-795.	12.8	77
52	Anodic oxidation of surfactants and organic compounds entrapped in micelles – Selective degradation mechanisms and soil washing solution reuse. Water Research, 2017, 118, 1-11.	11.3	77
53	Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids and Surfaces B: Biointerfaces, 2008, 63, 48-54.	5.0	76
54	Sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: Modeling of the metal/ligand ratio effect and role of the mineral fraction. Bioresource Technology, 2009, 100, 2959-2968.	9.6	75

#	Article	IF	Citations
55	Removal of colloidal biogenic selenium from wastewater. Chemosphere, 2015, 125, 130-138.	8.2	73
56	Lead sorption by biochar produced from digestates: Consequences of chemical modification and washing. Journal of Environmental Management, 2018, 219, 277-284.	7.8	71
57	Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part I. Case of aluminium sulphate. Environmental Pollution, 2002, 120, 617-626.	7.5	66
58	Viscosity evolution of anaerobic granular sludge. Biochemical Engineering Journal, 2006, 27, 315-322.	3.6	66
59	Effect of Na+ and Ca2+ on the aggregation properties of sieved anaerobic granular sludge. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 306, 142-149.	4.7	62
60	Fluorescence detection to determine proteins and humic-like substances fingerprints of exopolymeric substances (EPS) from biological sludges performed by size exclusion chromatography (SEC). Bioresource Technology, 2013, 131, 159-165.	9.6	62
61	Effect of soil/contamination characteristics and process operational conditions on aminopolycarboxylates enhanced soil washing for heavy metals removal: a review. Reviews in Environmental Science and Biotechnology, 2016, 15, 111-145.	8.1	62
62	Effect of temperature on selenium removal from wastewater by UASB reactors. Water Research, 2016, 94, 146-154.	11.3	62
63	Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chemical Engineering Journal, 2016, 284, 917-925.	12.7	62
64	Bioelectro-Fenton: evaluation of a combined biologicalâ€"advanced oxidation treatment for pharmaceutical wastewater. Environmental Science and Pollution Research, 2018, 25, 20283-20292.	5.3	62
65	A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (<i>Danio rerio</i>) embryogenesis. Nanotoxicology, 2017, 11, 87-97.	3.0	61
66	Performance comparison of different types of constructed wetlands for the removal of pharmaceuticals and their transformation products: a review. Environmental Science and Pollution Research, 2020, 27, 14342-14364.	5.3	61
67	Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part II. Case of copper sulfate. Environmental Pollution, 2002, 120, 627-634.	7.5	60
68	Fast and complete removal of the 5-fluorouracil drug from water by electro-Fenton oxidation. Environmental Chemistry Letters, 2018, 16, 281-286.	16.2	60
69	Preparation and applications of chitosan and cellulose composite materials. Journal of Environmental Management, 2022, 301, 113850.	7.8	60
70	Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges. Colloids and Surfaces B: Biointerfaces, 2010, 80, 161-168.	5.0	59
71	Cd(II) and Pb(II) sorption by extracellular polymeric substances (EPS) extracted from anaerobic granular biofilms: Evidence of a pH sorption-edge. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 444-449.	5.3	59
72	Granular sludge in full-scale anaerobic bioreactors: Trace element content and deficiencies. Enzyme and Microbial Technology, 2006, 39, 337-346.	3.2	58

#	Article	IF	Citations
73	Removal mechanisms in aerobic slurry bioreactors for remediation of soils and sediments polluted with hydrophobic organic compounds: An overview. Journal of Hazardous Materials, 2017, 339, 427-449.	12.4	58
74	Characterization and pH-dependent leaching behaviour of historical and modern copper slags. Journal of Geochemical Exploration, 2016, 160, 1-15.	3.2	57
75	<i>Pseudomonas moraviensis</i> subsp. stanleyae, a bacterial endophyte of hyperaccumulator <i>Stanleya pinnata</i> , is capable of efficient selenite reduction to elemental selenium under aerobic conditions. Journal of Applied Microbiology, 2015, 119, 400-410.	3.1	56
76	Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry. Environmental Pollution, 2016, 211, 354-362.	7.5	56
77	Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge. Bioresource Technology, 2016, 206, 1-8.	9.6	56
78	Evaluation of size exclusion chromatography (SEC) for the characterization of extracellular polymeric substances (EPS) in anaerobic granular sludges. Bioresource Technology, 2009, 100, 6258-6268.	9.6	55
79	Phosphorus Removal from Wastewater: The Potential Use of Biochar and the Key Controlling Factors. Water (Switzerland), 2021, 13, 517.	2.7	55
80	Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans. Applied Geochemistry, 2016, 68, 39-52.	3.0	54
81	Application of Zn isotopes in environmental impact assessment of Zn–Pb metallurgical industries: A mini review. Applied Geochemistry, 2016, 64, 128-135.	3.0	54
82	Mesophilic anaerobic digestion of several types of spent livestock bedding in a batch leach-bed reactor: substrate characterization and process performance. Waste Management, 2017, 59, 129-139.	7.4	54
83	Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides. 3. Influence of Chemical Speciation and Bioavailability on Contaminants Immobilization/Mobilization Bio-processes. Reviews in Environmental Science and Biotechnology, 2005, 4, 185-212.	8.1	53
84	Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresource Technology, 2019, 273, 581-591.	9.6	52
85	Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes. Environmental Science and Pollution Research, 2014, 21, 8406-8416.	5.3	51
86	Production, recovery and reuse of biogenic elemental selenium. Environmental Chemistry Letters, 2015, 13, 89-96.	16.2	51
87	Pharmaceuticals' removal by constructed wetlands: a critical evaluation and meta-analysis on performance, risk reduction, and role of physicochemical properties on removal mechanisms. Journal of Water and Health, 2020, 18, 253-291.	2.6	51
88	Nickel and cobalt sorption on anaerobic granular sludges: kinetic and equilibrium studies. Journal of Chemical Technology and Biotechnology, 2004, 79, 1219-1227.	3.2	50
89	Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. Journal of Hazardous Materials, 2015, 295, 193-200.	12.4	50
90	Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: Case of a Cu contaminated soil. Journal of Environmental Management, 2015, 163, 62-69.	7.8	50

#	Article	lF	CITATIONS
91	Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor. Journal of Hazardous Materials, 2017, 327, 79-88.	12.4	50
92	Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production. Waste Management, 2021, 119, 122-134.	7.4	50
93	Bioconversion of Selenate in Methanogenic Anaerobic Granular Sludge. Journal of Environmental Quality, 2006, 35, 1873-1883.	2.0	49
94	Remediation of soils contaminated by hydrophobic organic compounds: How to recover extracting agents from soil washing solutions?. Journal of Hazardous Materials, 2021, 404, 124137.	12.4	49
95	Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges. Environmental Science and Pollution Research, 2013, 20, 4509-4519.	5.3	48
96	Effect of digestate application on microbial respiration and bacterial communities' diversity during bioremediation of weathered petroleum hydrocarbons contaminated soils. Science of the Total Environment, 2019, 670, 271-281.	8.0	48
97	Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process using BDD anode: Effects of operating parameters on removal efficiency. Separation and Purification Technology, 2015, 156, 987-995.	7.9	47
98	Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2015, 99, 2405-2418.	3.6	47
99	Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(III and V) and Cd(II) sorption. International Biodeterioration and Biodegradation, 2018, $135, 96-102.$	3.9	47
100	Beneficial role of biochar addition on the anaerobic digestion of food waste: A systematic and critical review of the operational parameters and mechanisms. Journal of Environmental Management, 2021, 290, 112537.	7.8	47
101	Effect of Cobalt Sorption on Metal Fractionation in Anaerobic Granular Sludge. Journal of Environmental Quality, 2004, 33, 1256.	2.0	46
102	Zn–Ni sulfide selective precipitation: The role of supersaturation. Separation and Purification Technology, 2010, 74, 108-118.	7.9	45
103	Electrocoagulation of colloidal biogenic selenium. Environmental Science and Pollution Research, 2015, 22, 3127-3137.	5.3	45
104	Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1465-1474.	3.0	44
105	Influence of pH, EDTA/Fe(II) ratio, and microbial culture on Fe(II)-mediated autotrophic denitrification. Environmental Science and Pollution Research, 2017, 24, 21323-21333.	5.3	44
106	Removal of selenite from wastewater in a Phanerochaete chrysosporium pellet based fungal bioreactor. International Biodeterioration and Biodegradation, 2015, 102, 361-369.	3.9	43
107	Comparative performance of anaerobic attached biofilm and granular sludge reactors for the treatment of model mine drainage wastewater containing selenate, sulfate and nickel. Chemical Engineering Journal, 2018, 345, 545-555.	12.7	43
108	Anaerobic Digestion of Fruit Waste Mixed With Sewage Sludge Digestate Biochar: Influence on Biomethane Production. Frontiers in Energy Research, 2020, 8, .	2.3	43

#	Article	IF	CITATIONS
109	Effects of physico-chemical factors on the viscosity evolution of anaerobic granular sludge. Biochemical Engineering Journal, 2009, 43, 231-238.	3.6	42
110	Selenium Speciation Assessed by X-Ray Absorption Spectroscopy of Sequentially Extracted Anaerobic Biofilms. Environmental Science & Environmental Scie	10.0	41
111	Metal mobilization from metallurgical wastes by soil organic acids. Chemosphere, 2017, 178, 197-211.	8.2	41
112	Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environmental Research, 2022, 210, 112891.	7. 5	41
113	Behaviour of different cementitious material formulations in sewer networks. Water Science and Technology, 2014, 69, 1502-1508.	2.5	40
114	Fluidized-bed denitrification of mining water tolerates high nickel concentrations. Bioresource Technology, 2015, 179, 284-290.	9.6	40
115	Higher Cd adsorption on biogenic elemental selenium nanoparticles. Environmental Chemistry Letters, 2016, 14, 381-386.	16.2	40
116	Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: An overview. Critical Reviews in Environmental Science and Technology, 2016, 46, 1324-1366.	12.8	40
117	WEEE management in a circular economy perspective: an overview. Global Nest Journal, 2018, 20, 743-750.	0.1	40
118	Copper and trace element fractionation in electrokinetically treated methanogenic anaerobic granular sludge. Environmental Pollution, 2005, 138, 517-528.	7.5	39
119	Influence of sulfide concentration and macronutrients on the characteristics of metal precipitates relevant to metal recovery in bioreactors. Bioresource Technology, 2012, 110, 26-34.	9.6	39
120	Citric acid- and Tween® 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago) Tj ETQq0 0 23, 9215-9226.	0 rgBT /O\ 5.3	verlock 10 Tf 39
121	Biomineralization of tellurium and selenium-tellurium nanoparticles by the white-rot fungus Phanerochaete chrysosporium. International Biodeterioration and Biodegradation, 2017, 124, 258-266.	3.9	39
122	Biological removal of selenate and ammonium by activated sludge in a sequencing batch reactor. Bioresource Technology, 2017, 229, 11-19.	9.6	38
123	Sorption of zinc onto elemental selenium nanoparticles immobilized in Phanerochaete chrysosporium pellets. Environmental Science and Pollution Research, 2016, 23, 21619-21630.	5.3	37
124	Reduction of selenite to elemental selenium nanoparticles by activated sludge. Environmental Science and Pollution Research, 2016, 23, 1193-1202.	5.3	37
125	Laboratory investigation of the phosphorus removal (SRP and TP) from eutrophic lake water treated with aluminium. Water Research, 2006, 40, 2713-2719.	11.3	36
126	Bioalteration of synthetic Fe(III)-, Fe(II)-bearing basaltic glasses and Fe-free glass in the presence of the heterotrophic bacteria strain Pseudomonas aeruginosa: Impact of siderophores. Geochimica Et Cosmochimica Acta, 2016, 188, 147-162.	3.9	36

#	Article	IF	CITATIONS
127	The Fate of Copper Added to Surface Water: Field, Laboratory, and Modeling Studies. Environmental Toxicology and Chemistry, 2019, 38, 1386-1399.	4.3	36
128	Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste. Waste Management and Research, 2014, 32, 947-953.	3.9	35
129	Coal Bottom Ash as Sorbing Material for Fe(II), Cu(II), Mn(II), and Zn(II) Removal from Aqueous Solutions. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	35
130	Importance of organic amendment characteristics on bioremediation of PAH-contaminated soil. Environmental Science and Pollution Research, 2016, 23, 15041-15052.	5.3	35
131	ADM1 based mathematical model of trace element precipitation/dissolution in anaerobic digestion processes. Bioresource Technology, 2018, 267, 666-676.	9.6	35
132	Role of Design and Operational Factors in the Removal of Pharmaceuticals by Constructed Wetlands. Water (Switzerland), 2019, 11, 2356.	2.7	35
133	Role of Biochar in Anaerobic Digestion Based Biorefinery for Food Waste. Frontiers in Energy Research, 2019, 7, .	2.3	34
134	Assessing arsenic redox state evolution in solution and solid phase during As(III) sorption onto chemically-treated sewage sludge digestate biochars. Bioresource Technology, 2019, 275, 232-238.	9.6	34
135	Title is missing!. Water, Air, and Soil Pollution, 2003, 146, 75-91.	2.4	33
136	Influence of the binder on the behaviour of mortars exposed to H2S in sewer networks: a long-term durability study. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	33
137	Cobalt sorption onto anaerobic granular sludge: Isotherm and spatial localization analysis. Journal of Biotechnology, 2006, 121, 227-240.	3.8	32
138	Effects of different nickel species on autotrophic denitrification driven by thiosulfate in batch tests and a fluidized-bed reactor. Bioresource Technology, 2017, 238, 534-541.	9.6	32
139	Electro-Fenton removal of TNT: Evidences of the electro-chemical reduction contribution. Applied Catalysis B: Environmental, 2011, 104, 169-176.	20.2	31
140	Title is missing!. Water, Air, and Soil Pollution, 2003, 150, 3-22.	2.4	30
141	ADM1 based mathematical model of trace element complexation in anaerobic digestion processes. Bioresource Technology, 2019, 276, 253-259.	9.6	30
142	Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste. Environmental Technology (United Kingdom), 2015, 36, 870-880.	2.2	29
143	Bacterially-mediated weathering of crystalline and amorphous Cu-slags. Applied Geochemistry, 2016, 64, 92-106.	3.0	29
144	A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. Environmental Technology Reviews, 2017, 6, 94-116.	4.3	29

#	Article	IF	CITATIONS
145	Biological treatment of selenium-laden wastewater containing nitrate and sulfate in an upflow anaerobic sludge bed reactor at pH 5.0. Chemosphere, 2018, 211, 684-693.	8.2	29
146	Biological sulfate removal from gypsum contaminated construction and demolition debris. Journal of Environmental Management, 2013, 131, 82-91.	7.8	28
147	Bioweathering of lead blast furnace metallurgical slags by Pseudomonas aeruginosa. International Biodeterioration and Biodegradation, 2014, 86, 372-381.	3.9	28
148	Combined Speciation Analysis by X-ray Absorption Near-Edge Structure Spectroscopy, Ion Chromatography, and Solid-Phase Microextraction Gas Chromatographyâ^'Mass Spectrometry To Evaluate Biotreatment of Concentrated Selenium Wastewaters. Environmental Science & Emp; Technology, 2011, 45, 1067-1073.	10.0	27
149	Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags. Journal of Environmental Management, 2016, 180, 310-323.	7.8	27
150	Assessment of trace heavy metals dynamics during the interaction of aqueous solutions with the artificial OECD soil: Evaluation of the effect of soil organic matter content and colloidal mobilization. Chemosphere, 2016, 163, 382-391.	8.2	27
151	Morphology, Mineralogy, and Solid–Liquid Phase Separation Characteristics of Cu and Zn Precipitates Produced with Biogenic Sulfide. Environmental Science & Technology, 2014, 48, 664-673.	10.0	26
152	Characteristics of PAH tar oil contaminated soils—Black particles, resins and implications for treatment strategies. Journal of Hazardous Materials, 2017, 327, 206-215.	12.4	26
153	Performance Comparison of Different Constructed Wetlands Designs for the Removal of Personal Care Products. International Journal of Environmental Research and Public Health, 2020, 17, 3091.	2.6	26
154	Mineralogy and metals speciation in Mo rich mineral sludges generated at a metal recycling plant. Waste Management, 2015, 38, 303-311.	7.4	25
155	Alteration of the characteristics of extracellular polymeric substances (EPS) extracted from the fungus Phanerochaete chrysosporium when exposed to sub-toxic concentrations of nickel (II). International Biodeterioration and Biodegradation, 2018, 129, 179-188.	3.9	25
156	Bacterial seeding potential of digestate in bioremediation of diesel contaminated soil. International Biodeterioration and Biodegradation, 2019, 143, 104715.	3.9	25
157	Proteomic insights into Lysinibacillus spmediated biosolubilization of manganese. Environmental Science and Pollution Research, 2021, 28, 40249-40263.	5.3	25
158	Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the $Tr\tilde{A}^a$ s Marias zinc plant (Minas Gerais, Brazil). Environmental Science and Pollution Research, 2016, 23, 7504-7516.	5. 3	24
159	Effect of Cu, Ni and Zn on Fe(II)-driven autotrophic denitrification. Journal of Environmental Management, 2018, 218, 209-219.	7.8	24
160	Leaching and Selective Recovery of Cu from Printed Circuit Boards. Metals, 2019, 9, 1034.	2.3	24
161	Bioleaching and selective biorecovery of zinc from zinc metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil). Journal of Chemical Technology and Biotechnology, 2017, 92, 512-521.	3.2	23
162	Leachate flush strategies for managing volatile fatty acids accumulation in leach-bed reactors. Bioresource Technology, 2017, 232, 93-102.	9.6	23

#	Article	IF	CITATIONS
163	Biosynthesis of CdSe nanoparticles by anaerobic granular sludge. Environmental Science: Nano, 2017, 4, 824-833.	4.3	23
164	Recovery of phosphorus from municipal wastewater treatment sludge through bioleaching using Acidithiobacillus thiooxidans. Journal of Environmental Management, 2020, 270, 110818.	7.8	23
165	Seasonal and spatial variations in atmospheric PM2.5-bound PAHs in Karaj city, Iran: Sources, distributions, and health risks. Sustainable Cities and Society, 2021, 72, 103020.	10.4	23
166	Influence of pH shocks on trace metal dynamics and performance of methanol fed granular sludge bioreactors. Biodegradation, 2005, 16, 549-567.	3.0	22
167	Induction of cobalt limitation in methanol-fed UASB reactors. Journal of Chemical Technology and Biotechnology, 2006, 81, 1486-1495.	3.2	22
168	Effect of moisture on disintegration kinetics during anaerobic digestion of complex organic substrates. Waste Management and Research, 2014, 32, 40-48.	3.9	22
169	The Efficacy of Ozone/BAC Treatment on Non-Steroidal Anti-Inflammatory Drug Removal from Drinking Water and Surface Water. Ozone: Science and Engineering, 2015, 37, 343-356.	2.5	22
170	A review on the occurrence, fate and removal of steroidal hormones during treatment with different types of constructed wetlands. Journal of Environmental Chemical Engineering, 2020, 8, 103793.	6.7	22
171	A new micelle-based method to quantify the Tween $80\hat{A}^{\otimes}$ surfactant for soil remediation. Agronomy for Sustainable Development, 2013, 33, 839-846.	5.3	21
172	Recovery of molybdenum, nickel and cobalt by precipitation from the acidic leachate of a mineral sludge. Environmental Technology (United Kingdom), 2016, 37, 2231-2242.	2.2	21
173	Comparison of the mesophilic and thermophilic anaerobic digestion of spent cow bedding in leach-bed reactors. Bioresource Technology, 2017, 234, 466-471.	9.6	21
174	Impact of iron chelators on short-term dissolution of basaltic glass. Geochimica Et Cosmochimica Acta, 2015, 162, 83-98.	3.9	20
175	Colloidal Mobilization and Fate of Trace Heavy Metals in Semi-Saturated Artificial Soil (OECD) Irrigated with Treated Wastewater. Sustainability, 2016, 8, 1257.	3.2	20
176	Selenate removal in biofilm systems: effect of nitrate and sulfate on selenium removal efficiency, biofilm structure and microbial community. Journal of Chemical Technology and Biotechnology, 2018, 93, 2380-2389.	3.2	20
177	Functional potential of sewage sludge digestate microbes to degrade aliphatic hydrocarbons during bioremediation of a petroleum hydrocarbons contaminated soil. Journal of Environmental Management, 2021, 280, 111648.	7.8	20
178	Influence of low pH (6, 5 and 4) on nutrient dynamics and characteristics of acidifying sulfate reducing granular sludge. Process Biochemistry, 2008, 43, 1227-1238.	3.7	19
179	Hydrodynamic Mathematical Modelling of Aerobic Plug Flow and Nonideal Flow Reactors: A Critical and Historical Review. Critical Reviews in Environmental Science and Technology, 2014, 44, 2642-2673.	12.8	19
180	Browning Phenomenon of Medieval Stained Glass Windows. Analytical Chemistry, 2015, 87, 3662-3669.	6.5	19

#	Article	IF	CITATIONS
181	Bio-alteration of metallurgical wastes by Pseudomonas aeruginosa in a semi flow-through reactor. Journal of Environmental Management, 2015, 147, 297-305.	7.8	19
182	Calibration and Validation of a Two-Step Kinetic Mathematical Model for Predicting Cu Extraction Efficiency in an EDDS-Enhanced Soil Washing. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	19
183	Investigation of different ethylenediamine-N,N′-disuccinic acid-enhanced washing configurations for remediation of a Cu-contaminated soil: process kinetics and efficiency comparison between single-stage and multi-stage configurations. Environmental Science and Pollution Research, 2017, 24, 21960-21972.	5.3	19
184	Gas-liquid oxygen transfer in aerated and agitated slurry systems with high solid volume fractions. Chemical Engineering Journal, 2018, 350, 1073-1083.	12.7	19
185	Thermal and chemical enhanced recovery of heavy chlorinated organic compounds in saturated porous media: 1D cell drainage-imbibition experiments. Science of the Total Environment, 2020, 706, 135758.	8.0	19
186	Comparison of thermal and chemical enhanced recovery of DNAPL in saturated porous media: 2D tank pumping experiments and two-phase flow modelling. Science of the Total Environment, 2021, 760, 143958.	8.0	19
187	Identification of rheological parameters describing the physico-chemical properties of anaerobic sulphidogenic sludge suspensions. Enzyme and Microbial Technology, 2007, 40, 547-554.	3.2	18
188	TNT oxidation by Fenton reaction: Reagent ratio effect on kinetics and early stage degradation pathways. Chemical Engineering Journal, 2011, 173, 309-317.	12.7	18
189	Weathering of historical copper slags in dynamic experimental system with rhizosphere-like organic acids. Journal of Environmental Management, 2018, 222, 325-337.	7.8	18
190	Mineral characterization of the biogenic Fe(III)(hydr)oxides produced during Fe(II)-driven denitrification with Cu, Ni and Zn. Science of the Total Environment, 2019, 687, 401-412.	8.0	18
191	Uranium(VI) Scavenging by Amorphous Iron Phosphate Encrusting <i>Sphaerotilus natans</i> Filaments. Environmental Science & Encrusting <i>49, 14065-14075.</i>	10.0	17
192	Effect of selenite on the morphology and respiratory activity of Phanerochaete chrysosporium biofilms. Bioresource Technology, 2016, 210, 138-145.	9.6	17
193	(Bio)leaching Behavior of Chromite Tailings. Minerals (Basel, Switzerland), 2018, 8, 261.	2.0	17
194	Towards a Cross-Sectoral View of Nature-Based Solutions for Enabling Circular Cities. Water (Switzerland), 2021, 13, 2352.	2.7	17
195	Effect of sulfate and iron on physico-chemical characteristics of anaerobic granular sludge. Biochemical Engineering Journal, 2007, 33, 168-177.	3.6	16
196	<i>Sphaerotilus natans</i> , a Neutrophilic Iron-Related Sheath-Forming Bacterium: Perspectives for Metal Remediation Strategies. Geomicrobiology Journal, 2014, 31, 64-75.	2.0	16
197	On the difficulties of being rigorous in environmental geochemistry studies: some recommendations for designing an impactful paper. Environmental Science and Pollution Research, 2020, 27, 1267-1275.	5.3	16
198	Processing of Waste Copper Converter Slag Using Organic Acids for Extraction of Copper, Nickel, and Cobalt. Minerals (Basel, Switzerland), 2020, 10, 290.	2.0	16

#	Article	IF	CITATIONS
199	Leaching and selective copper recovery from acidic leachates of TrÃas Marias zinc plant (MG, Brazil) metallurgical purification residues. Journal of Environmental Management, 2016, 177, 26-35.	7.8	15
200	Hydrophobic molecular features of EPS extracted from anaerobic granular sludge treating wastewater from a paper recycling plant. Process Biochemistry, 2017, 58, 266-275.	3.7	15
201	A simultaneous assessment of organic matter and trace elements bio-accessibility in substrate and digestate from an anaerobic digestion plant. Bioresource Technology, 2019, 288, 121587.	9.6	15
202	Effect of elevated nitrate and sulfate concentrations on selenate removal by mesophilic anaerobic granular sludge bed reactors. Environmental Science: Water Research and Technology, 2018, 4, 303-314.	2.4	15
203	Effect of Sulfur Source on the Performance and Metal Retention of Methanol-Fed UASB Reactors. Biotechnology Progress, 2008, 21, 839-850.	2.6	14
204	Methane and VFA production in anaerobic digestion of rice straw under dry, semi-dry and wet conditions during start-up phase. Environmental Technology (United Kingdom), 2016, 37, 505-512.	2.2	14
205	Zn isotopes fractionation during slags' weathering: One source of contamination, multiple isotopic signatures. Chemosphere, 2018, 195, 483-490.	8.2	14
206	Evaluation of Fe(II)-driven autotrophic denitrification in packed-bed reactors at different nitrate loading rates. Chemical Engineering Research and Design, 2020, 142, 317-324.	5.6	14
207	Enrichment of Anammox Biomass from Different Seeding Sludge: Process Strategy and Microbial Diversity. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	13
208	The Influence of Design and Operational Factors on the Removal of Personal Care Products by Constructed Wetlands. Water (Switzerland), 2020, 12, 1367.	2.7	13
209	Phytotoxicity of Citric Acid and Tween \hat{A}^{\otimes} 80 for Potential Use as Soil Amendments in Enhanced Phytoremediation. International Journal of Phytoremediation, 2015, 17, 669-677.	3.1	12
210	Evaluation of PAH removal efficiency in an artificial soil amended with different types of organic wastes. Euro-Mediterranean Journal for Environmental Integration, 2016, 1, 1.	1.3	12
211	Industrial Selenium Pollution: Sources and Biological Treatment Technologies., 2017,, 75-101.		12
212	Prediction of the removal efficiency of emerging organic contaminants based on design and operational parameters of constructed wetlands. Journal of Environmental Chemical Engineering, 2021, 9, 104592.	6.7	12
213	Role of organic matter in copper mobility in a polymictic lake following copper sulfate treatment (Courtille Lake, France). Environmental Technology (United Kingdom), 2003, 24, 787-796.	2.2	11
214	Electroâ€Oxidation of the Pharmaceutical Furosemide: Kinetics, Mechanism, and Byâ€Products. Clean - Soil, Air, Water, 2015, 43, 1455-1463.	1.1	11
215	Moderate oxygen depletion as a factor favouring the filamentous growth of Sphaerotilus natans. Antonie Van Leeuwenhoek, 2015, 107, 1135-1144.	1.7	11
216	Modified Sample Preparation Approach for the Determination of the Phenolic and Humic-Like Substances in Natural Organic Materials By the Folin Ciocalteu Method. Journal of Agricultural and Food Chemistry, 2017, 65, 10666-10672.	5.2	11

#	Article	IF	CITATIONS
217	Amberlite IRA-900 Ion Exchange Resin for the Sorption of Selenate and Sulfate: Equilibrium, Kinetic, and Regeneration Studies. Journal of Environmental Engineering, ASCE, 2018, 144, 04018110.	1.4	11
218	Effect of sodium concentration on mobilization and fate of trace metals in standard OECD soil. Environmental Pollution, 2019, 250, 839-848.	7.5	11
219	Chromium mobility in ultramafic areas affected by mining activities in Barro Alto massif, Brazil: An isotopic study. Chemical Geology, 2021, 561, 120000.	3.3	11
220	Microbial Processing of Waste Shredded PCBs for Copper Extraction Cum Separationâ€"Comparing the Efficacy of Bacterial and Fungal Leaching Kinetics and Yields. Metals, 2021, 11, 317.	2.3	11
221	Nature-Based Units as Building Blocks for Resource Recovery Systems in Cities. Water (Switzerland), 2021, 13, 3153.	2.7	11
222	Effect of inoculum and sludge concentration on viscosity evolution of anaerobic granular sludges. Water Science and Technology, 2005, 52, 509-514.	2.5	10
223	Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur chemical state in anaerobic granular sludge. Journal of Physics: Conference Series, 2009, 190, 012184.	0.4	10
224	Current Views on Hydrodynamic Models of Nonideal Flow Anaerobic Reactors. Critical Reviews in Environmental Science and Technology, 2015, 45, 2175-2207.	12.8	10
225	Effect of various size exclusion chromatography (SEC) columns on the fingerprints of extracellular polymeric substances (EPS) extracted from biological sludge. Journal of the Taiwan Institute of Chemical Engineers, 2015, 49, 148-155.	5.3	10
226	Fate of Trace Metals in Anaerobic Digestion. Advances in Biochemical Engineering/Biotechnology, 2015, 151, 171-195.	1.1	10
227	Influence of activated sewage sludge amendment on PAH removal efficiency from a naturally contaminated soil: application of the landfarming treatment. Environmental Technology (United) Tj ETQq $1\ 1\ 0.78$	4 3.½ 4 rgBT	<i>™</i> werlock
228	Hydrophobic features of EPS extracted from anaerobic granular sludge: an investigation based on DAX-8 resin fractionation and size exclusion chromatography. Applied Microbiology and Biotechnology, 2017, 101, 3427-3438.	3.6	10
229	Leaching and Recovery of Metals. Environmental Chemistry for A Sustainable World, 2017, , 161-206.	0.5	10
230	Simultaneous removal of sulfate and selenate from wastewater by process integration of an ion exchange column and upflow anaerobic sludge blanket bioreactor. Separation Science and Technology, 2019, 54, 1387-1399.	2.5	10
231	Use of factorial experimental design to study the effects of iron and sulfur on growth of Scenedesmus acuminatus with different nitrogen sources. Journal of Applied Phycology, 2020, 32, 221-231.	2.8	9
232	A general framework to model the fate of trace elements in anaerobic digestion environments. Scientific Reports, 2021, 11, 7476.	3.3	9
233	Supramolecular aggregation of colloidal natural organic matter masks priority pollutants released in water from peat soil. Environmental Research, 2021, 195, 110761.	7.5	9
234	The anaerobic biodegradation of emerging organic contaminants by horizontal subsurface flow constructed wetlands. Water Science and Technology, 2021, 83, 2809-2828.	2.5	9

#	Article	IF	CITATIONS
235	White biotechnology and the production of bio-products. Systems Microbiology and Biomanufacturing, 2022, 2, 413-429.	2.9	9
236	A Review on Biotechnological Approaches Applied for Marine Hydrocarbon Spills Remediation. Microorganisms, 2022, 10, 1289.	3.6	9
237	Quantitative and qualitative characterization of extracellular polymeric substances from Anammox enrichment. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 738-746.	5.3	8
238	Two-Step Leaching of Valuable Metals from Discarded Printed Circuit Boards, and Process Optimization Using Response Surface Methodology. Advances in Recycling & Waste Management, 2017, 02, .	0.4	8
239	Electrocatalytic removal of fluroquinolones from simulated pharmaceutical effluent: Chemometric analysis, chemical blueprint of electrodes and generated sludge. Environmental Research, 2021, 195, 110844.	7.5	8
240	Effect of Different Enriched Vermicomposts, Humic Acid Extract and Indole-3-Acetic Acid Amendments on the Growth of Brassica napus. Plants, 2022, 11, 227.	3.5	8
241	Effects of biochar dose on cadmium accumulation in spinach and its fractionation in a calcareous soil. Arabian Journal of Geosciences, 2022, 15, 1.	1.3	8
242	Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant. Environmental Technology (United Kingdom), 2016, 37, 630-639.	2.2	7
243	Biorecovery of Metals from Electronic Waste. Environmental Chemistry for A Sustainable World, 2017, , 241-278.	0.5	7
244	The growth of open access publishing in geochemistry. Results in Geochemistry, 2020, 1, 100001.	0.8	7
245	Open Access publishing practice in geochemistry: overview of current state and look to the future. Heliyon, 2020, 6, e03551.	3.2	7
246	Effect of cadmium on sorghum root colonization by glomeral fungi and its impact on total and easily extractable glomalin production. Environmental Science and Pollution Research, 2021, 28, 34570-34583.	5.3	7
247	Prediction of the removal efficiency of emerging organic contaminants in constructed wetlands based on their physicochemical properties. Journal of Environmental Management, 2021, 294, 112916.	7.8	7
248	Bioaugmentation of thermophilic lignocellulose degrading bacteria accelerate the composting process of lignocellulosic materials. Biomass Conversion and Biorefinery, 2023, 13, 15887-15901.	4.6	7
249	Immobilization of Metal lons from Acid Mine Drainage by Coal Bottom Ash. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	6
250	Bioleaching kinetics of trace metals from coal ash using <i>Pseudomonas spp.</i> . MATEC Web of Conferences, 2019, 268, 01010.	0.2	6
251	Biodeterioration Affecting Efficiency and Lifetime of Plastic-Based Photovoltaics. Joule, 2020, 4, 2088-2100.	24.0	6
252	Permittivity and electrical resistivity measurements and estimations during the recovery of DNAPL in saturated porous media: 2D tank experiments. Journal of Applied Geophysics, 2021, 191, 104359.	2.1	6

#	Article	IF	CITATIONS
253	Removal of antimonate (Sb(V)) from aqueous solutions and its immobilization in soils with a novel Fe(III)-modified montmorillonite sorbent. Environmental Science and Pollution Research, 2022, 29, 2073-2083.	5.3	6
254	Chemical, Leaching, and Toxicity Characteristics of Coal Ashes from Circulating Fluidized Bed of a Philippine Coal-Fired Power Plant. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	5
255	Decolourization of Real Textile Wastewater by the Combination of Photocatalytic and Biological Oxidation Processes. Advances in Science, Technology and Innovation, 2018, , 115-117.	0.4	5
256	Potential Use of Waste-to-Bioenergy By-Products in Bioremediation of Total Petroleum Hydrocarbons (TPH)-Contaminated Soils. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 239-282.	0.5	5
257	A decision tree framework to support design, operation, and performance assessment of constructed wetlands for the removal of emerging organic contaminants. Science of the Total Environment, 2021, 760, 143334.	8.0	5
258	Cadmium Selenide Formation Influences the Production and Characteristics of Extracellular Polymeric Substances of Anaerobic Granular Sludge. Applied Biochemistry and Biotechnology, 2021, 193, 965-980.	2.9	5
259	Editorial: Eco-Sustainable Bioremediation of Textile Dye Wastewaters: Innovative Microbial Treatment Technologies and Mechanistic Insights of Textile Dye Biodegradation. Frontiers in Microbiology, 2021, 12, 707083.	3 . 5	5
260	Phytoremediation of Polycyclic Aromatic Hydrocarbons-Contaminated Soils. Soil Biology, 2021, , 419-445.	0.8	5
261	Oxidation state variation under \hat{l}^2 -irradiation in an iron-bearing soda lime glass system. Journal of Physics: Conference Series, 2009, 190, 012194.	0.4	4
262	Understanding Selenium Biogeochemistry in Engineered Ecosystems: Transformation and Analytical Methods., 2017,, 33-56.		4
263	Assessing chromium mobility in natural surface waters: Colloidal contribution to the isotopically exchangeable pool of chromium (EwCr value). Applied Geochemistry, 2018, 92, 19-29.	3.0	4
264	Industrial Selenium Pollution: Wastewaters and Physical–Chemical Treatment Technologies. , 2017, , 103-130.		4
265	Potential Use of Ascophyllum nodosum as a Biostimulant for Improving the Growth Performance of Vigna aconitifolia (Jacq.) Marechal. Plants, 2021, 10, 2361.	3.5	4
266	Editorial: Microbial Biominerals: Toward New Functions and Resource Recovery. Frontiers in Microbiology, 2021, 12, 796374.	3.5	4
267	Bioleaching of trace metals from coal ash using local isolate from coal ash ponds. MATEC Web of Conferences, 2018, 156, 03031.	0.2	3
268	Assessment of the DGT technique in digestate to fraction twelve trace elements. Talanta, 2019, 192, 204-211.	5.5	3
269	Editorial: Advanced Bioremediation Technologies and Processes for the Treatment of Synthetic Organic Compounds. Frontiers in Bioengineering and Biotechnology, 2021, 9, 721319.	4.1	3
270	Influence of Phosphonic Acids and Edta on Bacterial Copper Toxicity. Toxicological and Environmental Chemistry, 2002, 82, 75-91.	1,2	2

#	Article	IF	Citations
271	Electro-Fenton Treatment of TNT in Aqueous Media in Presence of Cyclodextrin. Application to Ex-situ Treatment of Contaminated Soil. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	2
272	Mineralogy, environment and health. European Journal of Mineralogy, 2010, 22, 627-627.	1.3	2
273	Response to the comment on "Copper metallurgical slags - current knowledge and fate: A review― Critical Reviews in Environmental Science and Technology, 2016, 46, 438-440.	12.8	2
274	Biochar from various lignocellulosic biomass wastes as an additive in biogas production from food waste., 2020,, 199-217.		2
275	Leaching and Recovery of Molybdenum from Spent Catalysts. Environmental Chemistry for A Sustainable World, 2017, , 207-239.	0.5	2
276	Fate and forms of Cu in a reservoir ecosystem following copper sulfate treatment (Saint Germain les) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
277	In Situ Thermal Treatments and Enhancements: Theory and Case Study. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 149-209.	0.5	2
278	Assessment of Zn bioavailability: XAFS study on speciation of zinc-particulate organic matter associations in polluted soils. Journal of Physics: Conference Series, 2009, 190, 012189.	0.4	1
279	Effect of substrate feeding on viscosity evolution of anaerobic granular sludges. Water Science and Technology, 2010, 62, 132-139.	2.5	1
280	Distribution trend of trace elements in digestate exposed to air: Laboratory-scale investigations using DGT-based fractionation. Journal of Environmental Management, 2019, 238, 159-165.	7.8	1
281	Low concentration of zeolite to enhance microalgal growth and ammonium removal efficiency in a membrane photobioreactor. Environmental Technology (United Kingdom), 2021, 42, 3863-3876.	2.2	1
282	Lead and Zinc Metallurgical Slags Mineralogy and Weathering. Environmental Chemistry for A Sustainable World, 2017, , 133-160.	0.5	1
283	Established technologies for metal recovery from industrial wastewater streams. , 2022, , 295-317.		1
284	Remediation of Selenium Contaminated Wastewater. Advances in Science, Technology and Innovation, 2018, , 23-24.	0.4	0
285	Data of OECD soil and leachate resulting from irrigation with aqueous solution containing trace metals at increasing sodium concentration. Data in Brief, 2019, 25, 104276.	1.0	0
286	Critical Raw Materials Recovery through Bio/Hydrometallurgy from Secondary Resources. Metals, 2019, 9, 1228.	2.3	0
287	CHAPTER 9. Secondary Metal Recovery from Slags. Chemistry in the Environment, 2021, , 268-301.	0.4	0
288	Aqueous alteration and bioalteration of a synthetic enstatite chondrite. Meteoritics and Planetary Science, 2021, 56, 601-618.	1.6	0

#	Article	IF	CITATIONS
289	Biotechnological intervention for societal development (BioSangam 2020). Environmental Science and Pollution Research, 2021, 28, 40217-40219.	5.3	0
290	Surface volatilization modeling of (semi-)volatile hydrophobic organic compounds: The role of reference compounds. Journal of Hazardous Materials, 2022, 424, 127300.	12.4	0
291	Remediation of PAH-Contaminated Soils: Experimental Analysis and Modeling of Hydrodynamics and Mass Transfer in a Soil-Slurry Bioreactor. , 0, , .		0
292	Bioprocesses for the Treatment of Volatile Organic Compounds. , 2019, , 207-224.		0
293	Raman Spectroscopy Study of Glass Alteration. , 2020, , .		0
294	Role of Extracellular Polymeric Substances (EPS) in Cell Surface Hydrophobicity., 2019, , 128-153.		0
295	Free Product Recovery of Non-aqueous Phase Liquids in Contaminated Sites: Theory and Case Studies. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 61-148.	0.5	0
296	Models performance in predicting least limiting water range in northwest of Iran under semiarid and semi-humid climates. International Journal of Environmental Science and Technology, 0, , 1.	3.5	0
297	Nitrate removal from groundwater using chemically modified coconut husk based granular activated carbon: characterization of the adsorbent, kinetics and mechanism. Systems Microbiology and Biomanufacturing, 0, , .	2.9	0