
Maria Mihaly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3122337/publications.pdf Version: 2024-02-01

Μλριλ Μιμλιν

#	Article	IF	CITATIONS
1	Specific interactions within micelle microenvironment in different charged dye/surfactant systems. Arabian Journal of Chemistry, 2016, 9, 9-17.	4.9	49
2	Nonionic microemulsion systems applied for removal of ionic dyes mixtures from textile industry wastewaters. Separation and Purification Technology, 2016, 158, 155-159.	7.9	43
3	Experimental and theoretical studies of NLO properties of organic–inorganic materials base on p-nitroaniline. Chemical Physics Letters, 2008, 455, 270-274.	2.6	38
4	Tandem adsorption-photodegradation activity induced by light on NiO-ZnO p–n couple modified silica nanomaterials. Materials Science in Semiconductor Processing, 2017, 57, 1-11.	4.0	37
5	"One-pot―synthesis of fluorescent Au@SiO2 and SiO2@Au nanoparticles. Arabian Journal of Chemistry, 2016, 9, 854-864.	4.9	26
6	Extension of optical properties of ZnO/SiO2 materials induced by incorporation of Au or NiO nanoparticles. Optical Materials, 2016, 56, 45-48.	3.6	25
7	NiO–silica based nanostructured materials obtained by microemulsion assisted sol–gel procedure. Materials Research Bulletin, 2011, 46, 1746-1753.	5.2	21
8	"One-pot―synthesis of Au–ZnO–SiO2 nanostructures for sunlight photodegradation. Journal of Molecular Catalysis A, 2016, 414, 148-159.	4.8	21
9	Synthesis of gold nanoparticles by microemulsion assisted photoreduction method. Comptes Rendus Chimie, 2012, 15, 1012-1021.	0.5	19
10	Enhancement of linear and nonlinear optical properties of deoxyribonucleic acid-silica thin films doped with rhodamine. Applied Physics Letters, 2011, 99, .	3.3	18
11	Physical–chemical parameters promoting phase changes in non-ionic environmental-friendly microemulsions. Fluid Phase Equilibria, 2013, 337, 18-25.	2.5	17
12	No Catalyst Dye Photodegradation in a Microemulsion Template. ACS Sustainable Chemistry and Engineering, 2017, 5, 5273-5283.	6.7	15
13	Synergism of thiocyanate ions and microinterfacial surface as driving forces for heavy multi-metals extraction. Arabian Journal of Chemistry, 2018, 11, 501-512.	4.9	13
14	Nonionic Microemulsion Extraction of Ni (II) from Wastewater. Molecular Crystals and Liquid Crystals, 2010, 523, 63/[635]-72/[644].	0.9	12
15	Hybride Nanomaterials Based on Silica Coated C60Clusters Obtained by Microemulsion Technique. Molecular Crystals and Liquid Crystals, 2008, 483, 205-215.	0.9	11
16	Novel materials based on DNA TMA and lanthanide (Ce ³⁺ , Pr ³⁺). Biopolymers, 2016, 105, 613-617.	2.4	10
17	An integrated value chain to iron-containing mine tailings capitalization by a combined process of magnetic separation, microwave digestion and microemulsion – assisted extraction. Chemical Engineering Research and Design, 2021, 154, 118-130.	5.6	10
18	Chromatic analysis of blue ballpoint pen inks and related dyes. Color Research and Application, 2015, 40, 169-177.	1.6	9

MARIA MIHALY

#	Article	IF	CITATIONS
19	Recovery of targeted hydrophilic compounds from simulated wastewaters using nonionic microemulsion systems. Chemical Engineering Research and Design, 2017, 109, 648-658.	5.6	8
20	Highly homogeneous nanostructured templates based on environmental friendly microemulsion for nanomaterials processing. Materials Letters, 2014, 132, 346-348.	2.6	7
21	Fullerene-modified silica materials designed for highly efficient dyes photodegradation. Materials Letters, 2015, 151, 119-121.	2.6	7
22	DNA based materials doped with praseodymium (III) hydroxide nanoparticles. Optical Materials, 2016, 56, 3-7.	3.6	6
23	Coal bottom ash processing for capitalization according to circular economy concept. Minerals Engineering, 2021, 170, 107055.	4.3	6
24	A systematic methodology to design silica templates: Silica microemulsion formulation and nanodroplet type and size estimation. Comptes Rendus Chimie, 2014, 17, 342-351.	0.5	5
25	Fluid structures used for wastewaters treatment with complex load. Separation and Purification Technology, 2018, 197, 1-7.	7.9	5
26	Fly Ash Waste Recycling by Pt/TiO2 Incorporation for Industrial Dye Removal. International Journal of Environmental Research and Public Health, 2021, 18, 3887.	2.6	5
27	Fe ₂ O ₃ Nanoparticles Coated in a SiO ₂ Shell by Microemulsion Method. Molecular Crystals and Liquid Crystals, 2008, 483, 228-236.	0.9	1
28	Biomaterials based on DNA embedded in silica matrix. , 2009, , .		1
29	C60Based Hybrid Nanocomposites Obtained in the Presence of Ultrasounds. Journal of Sol-Gel Science and Technology, 2004, 31, 51-58.	2.4	0
30	Tunning the Colour of Solar Absorbers by Changing Chromophore Nature and Nanoparticle Size. Springer Proceedings in Energy, 2014, , 311-324.	0.3	0