Ting-gui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3122022/publications.pdf

Version: 2024-02-01

72 2,434 27 48
papers citations h-index g-index

73 73 73 2084
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Comprehensive Study of 2000 Narrow Line Seyfert 1 Galaxies from the Sloan Digital Sky Survey. I. The Sample. Astrophysical Journal, Supplement Series, 2006, 166, 128-153.	7.7	264
2	ESTIMATING BLACK HOLE MASSES IN ACTIVE GALACTIC NUCLEI USING THE Mg II \hat{i} »2800 EMISSION LINE. Astrophysical Journal, 2009, 707, 1334-1346.	4.5	182
3	Broad-line Balmer decrements in blue active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2007, 383, 581-592.	4.4	142
4	A wide star–black-hole binary system from radial-velocity measurements. Nature, 2019, 575, 618-621.	27.8	142
5	Mid-infrared Variability of Changing-look AGNs. Astrophysical Journal Letters, 2017, 846, L7.	8.3	95
6	EXTREME CORONAL LINE EMITTERS: TIDAL DISRUPTION OF STARS BY MASSIVE BLACK HOLES IN GALACTIC NUCLEI?. Astrophysical Journal, 2012, 749, 115.	4. 5	86
7	THE WISE DETECTION OF AN INFRARED ECHO IN TIDAL DISRUPTION EVENT ASASSN-14li. Astrophysical Journal Letters, 2016, 828, L14.	8.3	71
8	Ensemble Learning for Independent Component Analysis of Normal Galaxy Spectra. Astronomical Journal, 2006, 131, 790-805.	4.7	68
9	TRANSIENT SUPERSTRONG CORONAL LINES AND BROAD BUMPS IN THE GALAXY SDSS J074820.67+471214.3. Astrophysical Journal, 2011, 740, 85.	4.5	62
10	LOW- <i>z</i> Mg II BROAD ABSORPTION-LINE QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, 2010, 714, 367-383.	4. 5	58
11	RAPID INFRARED VARIABILITY OF THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES: A VIEW FROM THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER</i>). Astrophysical Journal Letters, 2012, 759, L31.	8.3	54
12	A Comprehensive and Uniform Sample of Broad-line Active Galactic Nuclei from the SDSS DR7. Astrophysical Journal, Supplement Series, 2019, 243, 21.	7.7	54
13	EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY. Astrophysical Journal, 2015, 814, 150.	4.5	53
14	LONG-TERM SPECTRAL EVOLUTION OF TIDAL DISRUPTION CANDIDATES SELECTED BY STRONG CORONAL LINES. Astrophysical Journal, 2013, 774, 46.	4. 5	45
15	Variation of Ionizing Continuum: The Main Driver of Broad Absorption Line Variability. Astrophysical Journal, Supplement Series, 2017, 229, 22.	7.7	41
16	A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069. Astrophysical Journal Letters, 2018, 857, L16.	8.3	37
17	Mid-infrared Flare of TDE Candidate PS16dtm: Dust Echo and Implications for the Spectral Evolution. Astrophysical Journal, 2017, 850, 63.	4.5	36
18	Initial Results from a Systematic Search for Changing-look Active Galactic Nuclei Selected via Mid-infrared Variability. Astrophysical Journal, 2020, 889, 46.	4. 5	35

#	Article	IF	CITATIONS
19	Understanding Broad Mg ii Variability in Quasars with Photoionization: Implications for Reverberation Mapping and Changing-look Quasars. Astrophysical Journal, 2020, 888, 58.	4. 5	35
20	Infrared Echoes of Optical Tidal Disruption Events: $\hat{a}^4/1\%$ Dust-covering Factor or Less at Subparsec Scale. Astrophysical Journal, 2021, 911, 31.	4.5	34
21	Discovery of a Mid-infrared Echo from the TDE Candidate in the Nucleus of ULIRG F01004â^22237. Astrophysical Journal Letters, 2017, 841, L8.	8.3	33
22	Rapid "Turn-on―of Type-1 AGN in a Quiescent Early-type Galaxy SDSS1115+0544. Astrophysical Journal, 2019, 874, 44.	4.5	33
23	THE CORRELATION BETWEEN X-RAY AND UV PROPERTIES OF BAL QSOs. Astrophysical Journal, 2009, 690, 1006-1017.	4.5	32
24	LONG FADING MID-INFRARED EMISSION IN TRANSIENT CORONAL LINE EMITTERS: DUST ECHO OF A TIDAL DISRUPTION FLARE. Astrophysical Journal, 2016, 832, 188.	4.5	31
25	RX J1301.9+2747: A HIGHLY VARIABLE SEYFERT GALAXY WITH EXTREMELY SOFT X-RAY EMISSION. Astrophysical Journal, 2013, 768, 167.	4.5	29
26	OUTFLOW AND HOT DUST EMISSION IN BROAD ABSORPTION LINE QUASARS. Astrophysical Journal, 2014, 786, 42.	4.5	29
27	Long-term decline of the mid-infrared emission of normal galaxies: dust echo of tidal disruption flare?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2943-2965.	4.4	29
28	The properties of broad absorption line outflows based on a large sample of quasars. Nature Astronomy, 2019, 3, 265-271.	10.1	29
29	Infrared Echo and Late-stage Rebrightening of Nuclear Transient Ps1-10adi: Exploring the Torus with Tidal Disruption Events in Active Galactic Nuclei. Astrophysical Journal, 2019, 871, 15.	4.5	29
30	Discovery of an Mg iiÂChanging-look Active Galactic Nucleus and Its Implications for a Unification Sequence of Changing-look Active Galactic Nuclei. Astrophysical Journal Letters, 2019, 883, L44.	8.3	26
31	X-ray flares from the stellar tidal disruption by a candidate supermassive black hole binary. Nature Communications, 2020, 11, 5876.	12.8	26
32	X-Ray Spectral Shape Variation in Changing-look Seyfert Galaxy SDSS J155258+273728. Astrophysical Journal Letters, 2020, 890, L29.	8.3	26
33	Mid-infrared Outbursts in Nearby Galaxies (MIRONG). I. Sample Selection and Characterization. Astrophysical Journal, Supplement Series, 2021, 252, 32.	7.7	26
34	Dust reddening in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	25
35	DIFFERENCES IN HALO-SCALE ENVIRONMENTS BETWEEN TYPE 1 AND TYPE 2 AGNs AT LOW REDSHIFT. Astrophysical Journal, 2016, 832, 111.	4.5	25
36	Evidence for the connection between star formation rate and the evolutionary phases of quasars. Nature Astronomy, 2022, 6, 339-343.	10.1	25

#	Article	IF	Citations
37	Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052. Astrophysical Journal, 2017, 838, 88.	4.5	24
38	The Carbon and Nitrogen Abundance Ratio in the Broad Line Region of Tidal Disruption Events. Astrophysical Journal, 2017, 846, 150.	4.5	23
39	A METAL-STRONG AND DUST-RICH DAMPED Lyα ABSORPTION SYSTEM TOWARD THE QUASAR SDSS J115705.52+615521.7. Astrophysical Journal, 2012, 760, 42.	4.5	22
40	STRONG VARIABILITY OF OVERLAPPING IRON BROAD ABSORPTION LINES IN FIVE RADIO-SELECTED QUASARS. Astrophysical Journal, 2015, 803, 58.	4.5	21
41	Evidence of a Tidal-disruption Event in GSN 069 from the Abnormal Carbon and Nitrogen Abundance Ratio. Astrophysical Journal Letters, 2021, 920, L25.	8.3	21
42	An Ongoing Mid-infrared Outburst in the White Dwarf 0145+234: Catching in Action the Tidal Disruption of an Exoasteroid?. Astrophysical Journal Letters, 2019, 886, L5.	8.3	20
43	OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS. Astrophysical Journal Letters, 2013, 776, L15.	8.3	18
44	Central Engine and Host Galaxy of RXJ 1301.9+2747: A Multiwavelength View of a Low-mass Black Hole Active Galactic Nuclei with Ultra-soft X-Ray Emission. Astrophysical Journal, 2017, 837, 3.	4.5	18
45	Fast inflows as the adjacent fuel of supermassive black hole accretion disks in quasars. Nature, 2019, 573, 83-86.	27.8	17
46	High-redshift Extreme Variability Quasars from Sloan Digital Sky Survey Multiepoch Spectroscopy. Astrophysical Journal, 2020, 905, 52.	4.5	15
47	The Xâ€Ray Absorber in Broad Absorption Line Quasars. Astrophysical Journal, 2000, 545, 77-85.	4.5	14
48	Possible $\hat{a}^{1}/40.4$ h X-ray quasi-periodicity from an ultrasoft active galactic nucleus. Astronomy and Astrophysics, 2020, 644, L9.	5.1	14
49	Evidence for quasar fast outflows being accelerated at the scale of tens of parsecs. Science Advances, 2022, 8, eabk3291.	10.3	14
50	Relation between the Variations in the Mg ii \hat{l} »2798 Emission Line and 3000 \tilde{A} Continuum. Astrophysical Journal, 2017, 843, 30.	4.5	13
51	Prominence activation, optical flare, and post-flare loops on the RS Canum Venaticorum star SZ Piscium. Monthly Notices of the Royal Astronomical Society, 2019, 482, 988-998.	4.4	12
52	Discovery of ATLAS17jrp as an Optical-, X-Ray-, and Infrared-bright Tidal Disruption Event in a Star-forming Galaxy. Astrophysical Journal Letters, 2022, 930, L4.	8.3	12
53	Discovery of an Active Intermediate-mass Black Hole Candidate in the Barred Bulgeless Galaxy NGC 3319. Astrophysical Journal, 2018, 869, 49.	4.5	10
54	Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151. Astrophysical Journal, 2017, 844, 30.	4.5	9

#	Article	IF	Citations
55	Radio emission from outflow–cloud interaction and its constraint on tidal disruption event outflow. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3650-3657.	4.4	9
56	EVIDENCE FOR FLUORESCENT Fe ii EMISSION FROM EXTENDED LOW IONIZATION OUTFLOWS IN OBSCURED QUASARS. Astrophysical Journal, 2016, 824, 106.	4.5	8
57	Multi-wavelength Variability Properties of CGRaBS J0733+0456: Identifying a Distant Gamma-Ray Blazar at zÂ=Â3.01. Astrophysical Journal Letters, 2019, 879, L9.	8.3	8
58	A Mid-infrared Flare in the Active Galaxy MCG-02-04-026: Dust Echo of a Nuclear Transient Event. Astrophysical Journal, 2020, 898, 129.	4.5	8
59	Discovery of late-time X-ray flare and anomalous emission line enhancement after the nuclear optical outburst in a narrow-line Seyfert 1 Galaxy. Astronomy and Astrophysics, 2022, 660, A119.	5.1	7
60	Compact Radio Emission from Nearby Galaxies with Mid-infrared Nuclear Outbursts. Astrophysical Journal Letters, 2020, 896, L27.	8.3	6
61	An Extraordinary Response of Iron Emission to the Central Outburst in a Tidal Disruption Event Candidate. Astrophysical Journal Letters, 2021, 907, L29.	8.3	6
62	Years-delayed X-Ray Afterglows of TDEs Originated from Wind–Torus Interactions. Astrophysical Journal, 2021, 908, 197.	4.5	6
63	Mid-infrared Outbursts in Nearby Galaxies (MIRONG). II. Optical Spectroscopic Follow-up. Astrophysical Journal, Supplement Series, 2022, 258, 21.	7.7	6
64	The Physical Constraints on a New LoBAL QSO at zÂ=Â4.82. Astrophysical Journal, 2017, 838, 135.	4.5	5
65	The Deviation of the Size of the Broad-line Region between Reverberation Mapping and Spectroastrometry. Astrophysical Journal, 2021, 914, 143.	4.5	4
66	GB6 J2113+1121: A Multiwavelength Flaring \hat{I}^3 -Ray Blazar Temporally and Spatially Coincident with the Neutrino Event IceCube-191001A. Astrophysical Journal Letters, 2022, 932, L25.	8.3	4
67	On the origin of the dramatic spectral variability of WPVS 007. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4592-4602.	4.4	3
68	A Sharp Rise in the Detection Rate of Broad Absorption Line Variations in a Quasar SDSS J141955.26+522741.1. Astrophysical Journal Letters, 2021, 906, L8.	8.3	3
69	X-ray spectral evolution in an X-ray changing-look AGN NGC 1365 with variable column density. Research in Astronomy and Astrophysics, 2021, 21, 199.	1.7	3
70	Galactic-scale Broad Absorption Line Outflow in the Quasar SDSS J144842.45+042403.1. Astrophysical Journal, 2019, 877, 72.	4.5	2
71	Dust reddening in star-forming galaxies. Proceedings of the International Astronomical Union, 2012, 8, 291-291.	0.0	1
72	Leaked Lyı̂ \pm Emission: An Indicator of the Size of Quasar Absorption Outflows. Astrophysical Journal, 2017, 839, 77.	4.5	1