
Anup Singh Pathania

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3121834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secalonic Acid-D Represses HIF1α/VEGF-Mediated Angiogenesis by Regulating the Akt/mTOR/p70S6K Signaling Cascade. Cancer Research, 2015, 75, 2886-2896.	0.4	62
2	The anticancer potential of flavonoids isolated from the stem bark of Erythrina suberosa through induction of apoptosis and inhibition of STAT signaling pathway in human leukemia HL-60 cells. Chemico-Biological Interactions, 2013, 205, 128-137.	1.7	57
3	Disruption of the PI3K/AKT/mTOR signaling cascade and induction of apoptosis in HL-60 cells by an essential oil from Monarda citriodora. Food and Chemical Toxicology, 2013, 62, 246-254.	1.8	54
4	Fascaplysin Induces Caspase Mediated Crosstalk Between Apoptosis and Autophagy Through the Inhibition of PI3K/AKT/mTOR Signaling Cascade in Human Leukemia HLâ€60 Cells. Journal of Cellular Biochemistry, 2015, 116, 985-997.	1.2	54
5	Synthesis of a series of novel dihydroartemisinin monomers and dimers containing chalcone as a linker and their anticancer activity. European Journal of Medicinal Chemistry, 2016, 122, 232-246.	2.6	49
6	Synthesis of 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one analogs and their biological evaluation as anticancer agents: mTOR inhibitors. European Journal of Medicinal Chemistry, 2014, 80, 201-208.	2.6	36
7	Tiron and trolox potentiate the autophagic cell death induced by magnolol analog Ery5 by activation of Bax in HL-60 cells. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 605-617.	2.2	23
8	A novel stereo bioactive metabolite isolated from an endophytic fungus induces caspase dependent apoptosis and STAT-3 inhibition in human leukemia cells. European Journal of Pharmacology, 2015, 765, 75-85.	1.7	18
9	Design and synthesis of 1,4-substituted 1H-1,2,3-triazolo-quinazolin-4(3H)-ones by Huisgen 1,3-dipolar cycloaddition with PI3KÎ ³ isoform selective activity. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1005-1010.	1.0	14
10	A novel quinazolinone derivative induces cytochrome c interdependent apoptosis and autophagy in human leukemia MOLT-4 cells. Toxicology Reports, 2014, 1, 1013-1025.	1.6	7
11	3-(2,6-Dichloro-benzyloxy)-11-oxo-olean-12-ene-29-oic acid, a semisynthetic derivative of glycyrrhetic acid: synthesis, antiproliferative, apoptotic and anti-angiogenesis activity. MedChemComm, 2015, 6, 564-575.	3.5	7
12	Activation of lysosomal mediated cell death in the course of autophagy by mTORC1 inhibitor. Scientific Reports, 2022, 12, 5052.	1.6	6
13	4-(N-Phenyl-N′-substituted benzenesulfonyl)-6-(4-hydroxyphenyl)quinolines as inhibitors of mammalian target of rapamycin. Bioorganic and Medicinal Chemistry, 2015, 23, 4237-4247.	1.4	5
14	PID1 increases chemotherapy-induced apoptosis in medulloblastoma and glioblastoma cells in a manner that involves NFκB. Scientific Reports, 2017, 7, 835.	1.6	5