Paramaconi Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3121740/publications.pdf

Version: 2024-02-01

73 papers 5,885

36 h-index 76900 74 g-index

78 all docs 78 docs citations

78 times ranked 6699 citing authors

#	Article	IF	CITATIONS
1	Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catalysis, 2012, 2, 864-890.	11.2	728
2	Electrocatalytic Oxidation of Alcohols on Gold in Alkaline Media: Base or Gold Catalysis?. Journal of the American Chemical Society, 2011, 133, 6914-6917.	13.7	363
3	Surface characterization of platinum electrodes. Physical Chemistry Chemical Physics, 2008, 10, 1359-1373.	2.8	351
4	Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts. Accounts of Chemical Research, 2015, 48, 154-162.	15.6	313
5	Highly Selective Electro-Oxidation of Glycerol to Dihydroxyacetone on Platinum in the Presence of Bismuth. ACS Catalysis, 2012, 2, 759-764.	11.2	259
6	Bimetallic Aerogels: Highâ€Performance Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 9849-9852.	13.8	246
7	The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nature Chemistry, 2012, 4, 177-182.	13.6	237
8	Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catalysis Today, 2010, 154, 92-104.	4.4	228
9	Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy, 2018, 53, 458-467.	16.0	222
10	Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochemistry Communications, 2004, 6, 1080-1084.	4.7	218
11	Electrocatalysis on gold. Physical Chemistry Chemical Physics, 2014, 16, 13583-13594.	2.8	143
12	Cathodic Corrosion: A Quick, Clean, and Versatile Method for the Synthesis of Metallic Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 6346-6350.	13.8	142
13	Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO ₂ reduction. Journal of Materials Chemistry A, 2015, 3, 23690-23698.	10.3	138
14	Promotion of the Oxidation of Carbon Monoxide at Stepped Platinum Single-Crystal Electrodes in Alkaline Media by Lithium and Beryllium Cations. Journal of the American Chemical Society, 2010, 132, 16127-16133.	13.7	124
15	Selective Catalytic Reduction at Quasi-Perfect Pt(100) Domains: A Universal Low-Temperature Pathway from Nitrite to N ₂ . Journal of the American Chemical Society, 2011, 133, 10928-10939.	13.7	117
16	In Situ Surface Characterization of Preferentially Oriented Platinum Nanoparticles by Using Electrochemical Structure Sensitive Adsorption Reactions. Journal of Physical Chemistry B, 2004, 108, 13573-13575.	2.6	116
17	Cathodic Corrosion as a Facile and Effective Method To Prepare Clean Metal Alloy Nanoparticles. Journal of the American Chemical Society, 2011, 133, 17626-17629.	13.7	92
18	Fundamentals, achievements and challenges in the electrochemical sensing of pathogens. Analyst, The, 2015, 140, 7116-7128.	3 . 5	91

#	Article	IF	CITATIONS
19	Role of the Adsorbed Oxygen Species in the Selective Electrochemical Reduction of CO ₂ to Alcohols and Carbonyls on Copper Electrodes. Angewandte Chemie - International Edition, 2017, 56, 12919-12924.	13.8	86
20	Specific surface reactions for identification of platinum surface domains. Electrochimica Acta, 2005, 50, 4308-4317.	5. 2	83
21	Carbon Monoxide as a Promoter for its own Oxidation on a Gold Electrode. Angewandte Chemie - International Edition, 2010, 49, 1241-1243.	13.8	77
22	Direct Reduction of Nitrite to N $<$ sub $>$ 2 $<$ /sub $>$ 0 on a Pt (100) Electrode in Alkaline Media. Journal of the American Chemical Society, 2010, 132, 18042-18044.	13.7	77
23	Layer-by-Layer PMIRRAS Characterization of DMPC Bilayers Deposited on a Au(111) Electrode Surface. Langmuir, 2006, 22, 10365-10371.	3 . 5	73
24	Removing Polyvinylpyrrolidone from Catalytic Pt Nanoparticles without Modification of Superficial Order. ChemPhysChem, 2012, 13, 709-715.	2.1	72
25	Determination of (111) Ordered Domains on Platinum Electrodes by Irreversible Adsorption of Bismuth. Analytical Chemistry, 2005, 77, 5317-5323.	6.5	66
26	Thermodynamic analysis of (bi)sulphate adsorption on a Pt(111) electrode as a function of pH. Electrochimica Acta, 2008, 53, 6793-6806.	5.2	62
27	New insights into the catalytic activity of gold nanoparticles for CO oxidation in electrochemical media. Journal of Catalysis, 2014, 311, 182-189.	6.2	62
28	Fourier Transform Infrared Spectroscopy Study of CO Electro-oxidation on Pt(111) in Alkaline Media. Langmuir, 2009, 25, 13661-13666.	3 . 5	61
29	CO Electroxidation on Gold in Alkaline Media: A Combined Electrochemical, Spectroscopic, and DFT Study. Langmuir, 2010, 26, 12425-12432.	3.5	58
30	Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(100). Electrochimica Acta, 2005, 50, 3111-3121.	5. 2	57
31	New insights into the mechanism of nitrite reduction on a platinum electrode. Journal of Electroanalytical Chemistry, 2010, 649, 59-68.	3.8	57
32	Elucidation of the Chemical Nature of Adsorbed Species for Pt(111) in H ₂ SO ₄ Solutions by Thermodynamic Analysis. Langmuir, 2010, 26, 12408-12417.	3.5	57
33	Self-promotion mechanism for CO electrooxidation on gold. Physical Chemistry Chemical Physics, 2010, 12, 9373.	2.8	57
34	Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media. Electrochemistry Communications, 2009, 11, 1105-1108.	4.7	49
35	Electrochemical Reduction of Carbon Dioxide at Goldâ€Palladium Core–Shell Nanoparticles: Product Distribution versus Shell Thickness. ChemCatChem, 2016, 8, 952-960.	3.7	46
36	Importance of the gas-phase error correction for O2 when using DFT to model the oxygen reduction and evolution reactions. Journal of Electroanalytical Chemistry, 2021, 896, 115178.	3.8	37

#	Article	IF	CITATIONS
37	Selective Electrocatalysis on Platinum Nanoparticles with Preferential (100) Orientation Prepared by Cathodic Corrosion. Topics in Catalysis, 2014, 57, 255-264.	2.8	35
38	Structural Effects on Water Adsorption on Gold Electrodes. Journal of Physical Chemistry C, 2011, 115, 21249-21257.	3.1	33
39	A Synthetic Route for the Effective Preparation of Metal Alloy Nanoparticles and Their Use as Active Electrocatalysts. ACS Catalysis, 2016, 6, 1533-1539.	11.2	33
40	Effect of the Surface Structure of Gold Electrodes on the Coadsorption of Water and Anions. Journal of Physical Chemistry C, 2012, 116, 4786-4792.	3.1	31
41	High-Throughput Preparation of Metal Oxide Nanocrystals by Cathodic Corrosion and Their Use as Active Photocatalysts. Langmuir, 2017, 33, 13295-13302.	3.5	30
42	Controllable synthesis of nanostructured metal oxide and oxyhydroxide materials via electrochemical methods. Current Opinion in Electrochemistry, 2018, 10, 7-15.	4.8	29
43	Role of the Adsorbed Oxygen Species in the Selective Electrochemical Reduction of CO ₂ to Alcohols and Carbonyls on Copper Electrodes. Angewandte Chemie, 2017, 129, 13099-13104.	2.0	26
44	Thermodynamic evidence for K+–SO42Ⱂ ion pair formation on Pt(111). New insight into cation specific adsorption. Physical Chemistry Chemical Physics, 2010, 12, 12146.	2.8	24
45	Influence of the electrolyte concentration on the size and shape of platinum nanoparticles synthesized by cathodic corrosion. Electrochimica Acta, 2013, 112, 913-918.	5.2	24
46	Electrooxidation of Aqueous p-Methoxyphenol on Lead Oxide Electrodes. Journal of Applied Electrochemistry, 2004, 34, 583-589.	2.9	21
47	Tellurium Adatoms as an In-Situ Surface Probe of (111) Two-Dimensional Domains at Platinum Surfaces. Langmuir, 2006, 22, 10329-10337.	3.5	20
48	Electrochemical Conversion of CO ₂ and CH ₄ at Subzero Temperatures. ACS Catalysis, 2020, 10, 7464-7474.	11.2	20
49	Effect of the Surface Structure of $Pt(100)$ and $Pt(110)$ on the Oxidation of Carbon Monoxide in Alkaline Solution: an FTIR and Electrochemical Study. Electrocatalysis, 2011, 2, 242-253.	3.0	18
50	Electrochemical Oxidation of Small Organic Molecules on Au Nanoparticles with Preferential Surface Orientation. ChemElectroChem, 2015, 2, 958-962.	3.4	18
51	Electrochemical characterization and regeneration of sulfur poisoned Pt catalysts in aqueous media. Journal of Electroanalytical Chemistry, 2018, 816, 138-148.	3.8	18
52	Influence of beryllium cations on the electrochemical oxidation of methanol on stepped platinum surfaces in alkaline solution. Surface Science, 2015, 631, 267-271.	1.9	16
53	Elucidating the degradation mechanism of the cathode catalyst of PEFCs by a combination of electrochemical methods and X-ray fluorescence spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 22407-22415.	2.8	16
54	Electrochemical processes at the nanoscale. Current Opinion in Electrochemistry, 2018, 7, 138-145.	4.8	16

#	Article	IF	CITATIONS
55	Potential Dependent Structure and Stability of Cu(111) in Neutral Phosphate Electrolyte. Surfaces, 2019, 2, 145-158.	2.3	16
56	Selective electrocatalysis of acetaldehyde oxime reduction on (111) sites of platinum single crystal electrodes and nanoparticles surfaces. Journal of Solid State Electrochemistry, 2008, 12, 575-581.	2.5	13
57	Determining the parameters governing the electrochemical stability of thiols and disulfides self-assembled monolayer on gold electrodes in physiological medium. Journal of Electroanalytical Chemistry, 2018, 819, 51-57.	3.8	12
58	On the shifting peak of volcano plots for oxygen reduction and evolution. Electrochimica Acta, 2022, 426, 140799.	5.2	11
59	Can a Single Valence Electron Alter the Electrocatalytic Activity and Selectivity for CO ₂ Reduction on the Subnanometer Scale?. Journal of Physical Chemistry C, 2019, 123, 14591-14609.	3.1	10
60	The electro-oxidation of dimethylamine borane: Part 2, in situ FTIR on single-crystal gold electrodes. Electrochimica Acta, 2011, 56, 7637-7643.	5.2	8
61	Anomalous Phase Transition of Layered Lepidocrocite Titania Nanosheets to Anatase and Rutile. Crystal Growth and Design, 2019, 19, 3298-3304.	3.0	8
62	Insight into the Activity and Selectivity of Nanostructured Copper Titanates during Electrochemical Conversion of CO ₂ at Neutral pH via In Situ X-ray Absorption Spectroscopy. ACS Applied Materials & Ditarrange (2022), 14, 2742-2753.	8.0	8
63	Electrochemical conversion of CO ₂ in nonâ€conventional electrolytes: Recent achievements and future challenges. Electrochemical Science Advances, 2023, 3, .	2.8	8
64	Nickel confined in 2D earth-abundant oxide layers for highly efficient and durable oxygen evolution catalysts. Journal of Materials Chemistry A, 2020, 8, 13340-13350.	10.3	6
65	New insight on the behavior of the irreversible adsorption and underpotential deposition of thallium on platinum (111) and vicinal surfaces in acid electrolytes. Electrochimica Acta, 2015, 151, 319-325.	5.2	5
66	Surface galvanic formation of Co-OH on Birnessite and its catalytic activity for the oxygen evolution reaction. Journal of Catalysis, 2021, 396, 304-314.	6.2	5
67	Electrochemical Synthesis of Nanostructured Metal-Doped Titanates and Investigation of Their Activity as Oxygen Evolution Photoanodes. ACS Applied Energy Materials, 2018, , .	5.1	4
68	Adsorption and Electrochemical Oxidation of Small Sulfurâ^'Containing Anions on Pt Electrodes in Organic Media. ChemElectroChem, 2018, 5, 2228-2234.	3.4	3
69	Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes. Electrochimica Acta, 2017, 248, 409-415.	5.2	2
70	Editorial: Electrocatalysis on Shape-Controlled Nanoparticles. Frontiers in Chemistry, 2019, 7, 885.	3.6	1
71	Design of Surface-Modified Electrodes for the Electrochemical Adsorption of Platinum-Based Anticancer Drugs. Chemistry of Materials, 2019, 31, 8012-8018.	6.7	0
72	Platinum-Based Anode Catalysts for Polymer Electrolyte Fuel Cells., 2014, , 1606-1617.		0

#	Article	IF	CITATIONS
73	Surface Design: Exploiting the Instability of Small Nanoparticles on Metallic Substrates. ECS Transactions, 2020, 97, 885-892.	0.5	O