Paola Marangolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3121687/publications.pdf

Version: 2024-02-01

84 papers 4,369 citations

147801 31 h-index 63 g-index

84 all docs

84 docs citations

84 times ranked 4180 citing authors

#	Article	IF	Citations
1	Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. International Journal of Neuropsychopharmacology, 2021, 24, 256-313.	2.1	277
2	Spinal or cortical direct current stimulation: Which is the best? Evidence from apraxia of speech in post-stroke aphasia. Behavioural Brain Research, 2021, 399, 113019.	2.2	3
3	Adjunctive Approaches to Aphasia Rehabilitation: A Review on Efficacy and Safety. Brain Sciences, 2021, 11, 41.	2.3	20
4	DUAL-tDCS Treatment over the Temporo-Parietal Cortex Enhances Writing Skills: First Evidence from Chronic Post-Stroke Aphasia. Life, 2021, 11, 343.	2.4	3
5	Procedural Learning through Action Observation: Preliminary Evidence from Virtual Gardening Activity in Intellectual Disability. Brain Sciences, 2021, 11, 766.	2.3	3
6	A Standardized Prospective Memory Evaluation of the Effects of COVID-19 Confinement on Young Students. Journal of Clinical Medicine, 2021, 10, 3919.	2.4	12
7	Editorial: New Perspectives and Methodologies in the Diagnosis and Rehabilitation of Aphasia. Brain Sciences, 2021, 11, 1508.	2.3	1
8	The potential effects of transcranial direct current stimulation (tDCS) on language functioning: Combining neuromodulation and behavioral intervention in aphasia. Neuroscience Letters, 2020, 719, 133329.	2.1	25
9	Looking at ancillary systems for verb recovery: Evidence from non-invasive brain stimulation. Brain and Cognition, 2020, 139, 105515.	1.8	6
10	Conversational Therapy in Aphasia: From Behavioral Intervention to Neuromodulation. Seminars in Speech and Language, 2020, 41, 061-070.	0.8	6
11	Stairways to the brain: Transcutaneous spinal direct current stimulation (tsDCS) modulates a cerebellar-cortical network enhancing verb recovery. Brain Research, 2020, 1727, 146564.	2.2	9
12	Does COVID-19 Impact Less on Post-stroke Aphasia? This Is Not the Case. Frontiers in Psychology, 2020, 11, 564717.	2.1	15
13	Can Alzheimer's Disease Be Prevented? First Evidence from Spinal Stimulation Efficacy on Executive Functions. Journal of Alzheimer's Disease, 2020, 77, 1755-1764.	2.6	3
14	Conversational Therapy through Semi-Immersive Virtual Reality Environments for Language Recovery and Psychological Well-Being in Post Stroke Aphasia. Behavioural Neurology, 2020, 2020, 1-15.	2.1	19
15	Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimulation, 2020, 13, 1124-1149.	1.6	78
16	Neuroscientific protocols for exploring the mental lexicon: Evidence from aphasia., 2020,, 127-166.		0
17	High-Definition Transcranial Direct Current Stimulation Improves Verb Recovery in Aphasic Patients Depending on Current Intensity. Neuroscience, 2019, 406, 159-166.	2.3	22
18	Transcranial Cerebellar Direct Current Stimulation Enhances Verb Generation but Not Verb Naming in Poststroke Aphasia. Journal of Cognitive Neuroscience, 2018, 30, 188-199.	2.3	54

#	Article	IF	CITATIONS
19	Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimulation, 2018, 11, 310-321.	1.6	141
20	Transcranial direct current stimulation (tDCS) facilitates verb learning by altering effective connectivity in the healthy brain. Neurolmage, 2018, 181, 550-559.	4.2	42
21	Differential effects of bihemispheric and unihemispheric transcranial direct current stimulation in young and elderly adults in verbal learning. Behavioural Brain Research, 2017, 321, 170-175.	2.2	32
22	Transcranial Direct Current Stimulation and Attentional Processing in Healthy Individuals. Brain Stimulation, 2017, 10, e15.	1.6	0
23	Considerations for Research Treatment of Aphasia Combining Neuromodulation and Speech-Language Intervention. Brain Stimulation, 2017, 10, e15-e16.	1.6	0
24	Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology, 2017, 128, 56-92.	1.5	1,213
25	Right sensory-motor functional networks subserve action observation therapy in aphasia. Brain Imaging and Behavior, 2017, 11, 1397-1411.	2.1	29
26	Moving Beyond the Brain: Transcutaneous Spinal Direct Current Stimulation in Post-Stroke Aphasia. Frontiers in Neurology, 2017, 8, 400.	2.4	24
27	Different Cognitive Profiles of Patients with Severe Aphasia. Behavioural Neurology, 2017, 2017, 1-15.	2.1	41
28	Use of tDCS in Aphasia Rehabilitation: A Systematic Review of the Behavioral Interventions Implemented With Noninvasive Brain Stimulation for Language Recovery. American Journal of Speech-Language Pathology, 2016, 25, S854-S867.	1.8	18
29	Bilateral Transcranial Direct Current Stimulation Language Treatment Enhances Functional Connectivity in the Left Hemisphere: Preliminary Data from Aphasia. Journal of Cognitive Neuroscience, 2016, 28, 724-738.	2.3	90
30	Combining Voxel-based Lesion-symptom Mapping (VLSM) With A-tDCS Language Treatment: Predicting Outcome of Recovery in Nonfluent Chronic Aphasia. Brain Stimulation, 2015, 8, 769-776.	1.6	70
31	Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia. Brain Stimulation, 2015, 8, 1108-1115.	1.6	62
32	Combining TMS-EEG with transcranial direct current stimulation language treatment in aphasia. Expert Review of Neurotherapeutics, 2015, 15, 833-845.	2.8	39
33	Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): Review and recommendations from an expert panel. Clinical Research and Regulatory Affairs, 2015, 32, 22-35.	2.1	208
34	Bihemispheric tDCS enhances language recovery but does not alter BDNF levels in chronic aphasic patients. Restorative Neurology and Neuroscience, 2014, 32, 367-379.	0.7	50
35	"lf two witches would watch two watches, which witch would watch which watch?―tDCS over the left frontal region modulates tongue twister repetition in healthy subjects. Neuroscience, 2014, 256, 195-200.	2.3	25
36	Options to enhance recovery from aphasia by means of non-invasive brain stimulation and action observation therapy. Expert Review of Neurotherapeutics, 2014, 14, 75-91.	2.8	33

#	Article	IF	CITATIONS
37	Something to talk about: Enhancement of linguistic cohesion through tdCS in chronic non fluent aphasia. Neuropsychologia, 2014, 53, 246-256.	1.6	57
38	Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia. European Journal of Neuroscience, 2013, 38, 3370-3377.	2.6	72
39	Differential involvement of the left frontal and temporal regions in verb naming: A tDCS treatment study. Restorative Neurology and Neuroscience, 2013, 31, 63-72.	0.7	61
40	When solving 22–7 is much more difficult than 99–12. Neurocase, 2013, 19, 54-66.	0.6	2
41	How Conversational Therapy influences language recovery in chronic non-fluent aphasia. Neuropsychological Rehabilitation, 2013, 23, 715-731.	1.6	16
42	tDCS stimulation segregates words in the brain: evidence from aphasia. Frontiers in Human Neuroscience, 2013, 7, 269.	2.0	60
43	tDCS over the left inferior frontal cortex improves speech production in aphasia. Frontiers in Human Neuroscience, 2013, 7, 539.	2.0	133
44	Walking but Not Barking Improves Verb Recovery: Implications for Action Observation Treatment in Aphasia Rehabilitation. PLoS ONE, 2012, 7, e38610.	2.5	36
45	Transcranial Direct Current Stimulation Improves Word Retrieval in Healthy and Nonfluent Aphasic Subjects. Journal of Cognitive Neuroscience, 2011, 23, 2309-2323.	2.3	247
46	Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behavioural Brain Research, 2011, 225, 498-504.	2.2	117
47	Improving language without words: First evidence from aphasia. Neuropsychologia, 2010, 48, 3824-3833.	1.6	81
48	Language and its interacting components: The right hemisphere hypothesis in derivational morphology. Brain Research, 2010, 1320, 114-122.	2.2	6
49	Top-down projections to the primary visual areas necessary for object recognition: A case study. Vision Research, 2010, 50, 1074-1085.	1.4	0
50	When "Crack walnuts―lies in different brain regions: Evidence from a voxel-based lesion-symptom mapping study. Journal of the International Neuropsychological Society, 2010, 16, 433-442.	1.8	10
51	Word and number reading in the brain: Evidence from a Voxel-based Lesion-symptom Mapping study. Neuropsychologia, 2009, 47, 1944-1953.	1.6	31
52	Parallel recovery in a bilingual aphasic: A neurolinguistic and fMRI study Neuropsychology, 2009, 23, 405-409.	1.3	38
53	Dissociations in processing derivational morphology: The right basal ganglia involvement. Neuropsychologia, 2008, 46, 196-205.	1.6	15
54	Dissociation between nonpropositional and propositional speech: A single case study. Neurocase, 2008, 14, 317-328.	0.6	6

#	Article	IF	CITATIONS
55	Noun–verb naming in aphasia: a voxel-based lesion-symptom mapping study. NeuroReport, 2007, 18, 1455-1458.	1.2	40
56	Repeating through the insula: evidence from two consecutive strokes. NeuroReport, 2007, 18, 1367-1370.	1.2	13
57	Functional Anatomy of Derivational Morphology. Cortex, 2006, 42, 1093-1106.	2.4	65
58	When "macrocefalo (macrocephalous)―is read "minicervello (minibrain)― Evidence from a single case study. Brain and Language, 2005, 92, 212-218.	1.6	1
59	Analyzing aphasia data in a multidimensional symptom space. Brain and Language, 2005, 92, 106-116.	1.6	18
60	"l can write seven but I can't say it― a case of domain-specific phonological output deficit for numbers. Neuropsychologia, 2005, 43, 1177-1188.	1.6	15
61	Selective impairment for reading numbers and number words: a single case study. Neuropsychologia, 2004, 42, 997-1006.	1.6	29
62	Modality-Specific Naming Deficit: Cognitive and Neural Mechanisms Implicated in Naming to Definition. Neurocase, 2004, 10, 280-289.	0.6	8
63	Independent Access to Phonological and Orthographic Lexical Representations: A Replication Study. Neurocase, 2004, 10, 300-307.	0.6	10
64	Metaphor Comprehension in Right Brain-Damaged Patients with Visuo-Verbal and Verbal Material: A Dissociation (RE)Considered. Cortex, 2004, 40, 479-490.	2.4	85
65	The Neural Substrates of Derivational Morphological Processing: An Fmri Study. Cortex, 2004, 40, 185-186.	2.4	4
66	The Right Hemisphere Involvement in the Processing of Morphologically Derived Words. Journal of Cognitive Neuroscience, 2003, 15, 364-371.	2.3	33
67	Dissociation Between Personal and Extrapersonal Neglect in a Crossed Aphasia Study. Neurocase, 2003, 9, 414-420.	0.6	19
68	Between language and space: a cross-domain interaction. NeuroReport, 2003, 14, 1381-1383.	1.2	4
69	Between language and space: a cross-domain interaction. NeuroReport, 2003, 14, 1381-1383.	1.2	7
70	Linguistic and Nonlinguistic Priming in Aphasia. Brain and Language, 2001, 76, 62-69.	1.6	18
71	Acquisition of New "Words―in Normal Subjects: A Suggestion for the Treatment of Anomia. Brain and Language, 2001, 77, 45-59.	1.6	54
72	The role of argument structure in the production of nouns and verbs. Neuropsychologia, 2001, 39, 1125-1137.	1.6	56

#	Article	IF	CITATIONS
73	Cognitive neuropsychological rehabilitation: The emperorâ \in ^M s new clothes?. Neuropsychological Rehabilitation, 2000, 10, 219-229.	1.6	59
74	Preserved confrontation naming and impaired sentence completion: A case study. Neurocase, 1999, 5, 213-221.	0.6	6
75	The Nature of the Disorder Underlying the Inability to Retrieve Proper Names. Cortex, 1999, 35, 675-685.	2.4	26
76	Preserved Confrontation Naming and Impaired Sentence Completion: A Case Study. Neurocase, 1999, 5, 213-220.	0.6	1
77	Effects of Parietal Lesions in Humans on Color and Location Priming. Journal of Cognitive Neuroscience, 1998, 10, 704-716.	2.3	12
78	Let not thy left hand know what thy right hand knoweth. The case of a patient with an infarct involving the callosal pathways. Brain, 1998, 121, 1459-1467.	7.6	17
79	Reading of lexically stressed words by Italian aphasic patients: A retrospective study Neuropsychology, 1998, 12, 573-577.	1.3	1
80	An on-line study of grammaticality judgements in normal and aphasic speakers of Italian. Aphasiology, 1997, 11, 543-579.	2.2	64
81	Response bias in color priming. Acta Psychologica, 1997, 95, 3-14.	1.5	13
82	Evolution of Oral and Written Confrontation Naming Errors in Aphasia. A Retrospective Study on Vascular Patients. Journal of Clinical and Experimental Neuropsychology, 1996, 18, 77-87.	1.3	14
83	Residual orthographic and phonological knowledge in an anomic patient. Applied Neuropsychology, 1994, 1, 8-14.	1.5	1
84	Priming Effect in a Color Discrimination Task. Perceptual and Motor Skills, 1993, 77, 259-269.	1.3	15