Yuechang Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3121504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Active Catalysts of Gold Nanoparticles Supported on Threeâ€Dimensionally Ordered Macroporous LaFeO ₃ for Soot Oxidation. Angewandte Chemie - International Edition, 2011, 50, 2326-2329.	13.8	306
2	Synergy of Single-Atom Ni ₁ and Ru ₁ Sites on CeO ₂ for Dry Reforming of CH ₄ . Journal of the American Chemical Society, 2019, 141, 7283-7293.	13.7	272
3	A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nature Energy, 2018, 3, 1042-1050.	39.5	230
4	The catalysts of three-dimensionally ordered macroporous Ce1â^'xZrxO2-supported gold nanoparticles for soot combustion: The metal–support interaction. Journal of Catalysis, 2012, 287, 13-29.	6.2	215
5	Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4. Applied Catalysis B: Environmental, 2018, 226, 360-372.	20.2	211
6	Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Applied Catalysis B: Environmental, 2020, 263, 118314.	20.2	206
7	Three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported gold nanoparticles: synthesis with controllable size and super-catalytic performance for soot oxidation. Energy and Environmental Science, 2011, 4, 2959.	30.8	171
8	Roles of Surface-Active Oxygen Species on 3DOM Cobalt-Based Spinel Catalysts M _{<i>x</i>} Co _{3–<i>x</i>} O ₄ (M = Zn and Ni) for NO _{<i>x</i>} -Assisted Soot Oxidation. ACS Catalysis, 2019, 9, 7548-7567.	11.2	158
9	Fabrication of Spinel-Type Pd _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Binary Active Sites on 3D Ordered Meso-macroporous Ce-Zr-O ₂ with Enhanced Activity for Catalytic Soot Oxidation. ACS Catalysis, 2018, 8, 7915-7930.	11.2	157
10	AuPd/3DOM-TiO 2 catalysts for photocatalytic reduction of CO 2 : High efficient separation of photogenerated charge carriers. Applied Catalysis B: Environmental, 2017, 209, 228-239.	20.2	142
11	3D ordered macroporous TiO ₂ -supported Pt@CdS core–shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO ₂ with water to methane. Journal of Materials Chemistry A, 2015, 3, 11074-11085.	10.3	138
12	Fabrication of inverse opal TiO2-supported Au@CdS core–shell nanoparticles for efficient photocatalytic CO2 conversion. Applied Catalysis B: Environmental, 2015, 179, 422-432.	20.2	121
13	Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO3 with enhanced CO2 adsorption and photoelectron enrichment for selective CO2 reduction with H2O to CH4. Journal of Catalysis, 2019, 377, 309-321.	6.2	114
14	Efficient photocatalysts of TiO2 nanocrystals-supported PtRu alloy nanoparticles for CO2 reduction with H2O: Synergistic effect of Pt-Ru. Applied Catalysis B: Environmental, 2018, 236, 445-457.	20.2	113
15	High-efficient catalysts of core-shell structured Pt@transition metal oxides (TMOs) supported on 3DOM-Al2O3 for soot oxidation: The effect of strong Pt-TMO interaction. Applied Catalysis B: Environmental, 2019, 244, 628-640.	20.2	111
16	Nature of Cu Species in Cu–SAPO-18 Catalyst for NH ₃ –SCR: Combination of Experiments and DFT Calculations. Journal of Physical Chemistry C, 2016, 120, 14669-14680.	3.1	107
17	Efficiently multifunctional catalysts of 3D ordered meso-macroporous Ce0.3Zr0.7O2-supported PdAu@CeO2 core-shell nanoparticles for soot oxidation: Synergetic effect of Pd-Au-CeO2 ternary components. Applied Catalysis B: Environmental, 2019, 251, 247-260.	20.2	105
18	The novel catalysts of truncated polyhedron Pt nanoparticles supported on three-dimensionally ordered macroporous oxides (Mn, Fe, Co, Ni, Cu) with nanoporous walls for soot combustion. Applied Catalysis B: Environmental. 2014. 146. 57-70.	20.2	101

YUECHANG WEI

#	Article	IF	CITATIONS
19	Boosting the Removal of Diesel Soot Particles by the Optimal Exposed Crystal Facet of CeO ₂ in Au/CeO ₂ Catalysts. Environmental Science & Technology, 2020, 54, 2002-2011.	10.0	101
20	Comparative study of nanometric Co-, Mn- and Fe-based perovskite-type complex oxide catalysts for the simultaneous elimination of soot and NO from diesel engine exhaust. Catalysis Today, 2012, 184, 288-300.	4.4	98
21	Photocatalysts of 3D Ordered Macroporous TiO ₂ -Supported CeO ₂ Nanolayers: Design, Preparation, and Their Catalytic Performances for the Reduction of CO ₂ with H ₂ O under Simulated Solar Irradiation. Industrial & amp; Engineering Chemistry Research, 2014, 53, 17345-17354.	3.7	92
22	Interaction-Induced Self-Assembly of Au@La ₂ O ₃ Core–Shell Nanoparticles on La ₂ O ₂ O ₂ Co ₃ Nanorods with Enhanced Catalytic Activity and Stability for Soot Oxidation. ACS Catalysis, 2019, 9, 3700-3715.	11.2	91
23	Ternary heterojunction in rGO-coated Ag/Cu2O catalysts for boosting selective photocatalytic CO2 reduction into CH4. Applied Catalysis B: Environmental, 2022, 311, 121371.	20.2	86
24	Simultaneous NO _{<i>x</i>} and Particulate Matter Removal from Diesel Exhaust by Hierarchical Fe-Doped Ce–Zr Oxide. ACS Catalysis, 2017, 7, 3883-3892.	11.2	85
25	Multifunctional catalysts of three-dimensionally ordered macroporous oxide-supported Au@Pt core–shell nanoparticles with high catalytic activity and stability for soot oxidation. Journal of Catalysis, 2014, 317, 62-74.	6.2	84
26	Three-Dimensionally Ordered Macroporous Mn _{<i>x</i>} Ce _{1–<i>x</i>} O _δ and Pt/Mn _{0.5} Ce _{0.5} O _δ Catalysts: Synthesis and Catalytic Performance for Soot Oxidation. Industrial & Engineering Chemistry Research, 2014, 53, 9653-9664.	3.7	82
27	All-solid-state Z-scheme photocatalysts of g-C3N4/Pt/macroporous-(TiO2@carbon) for selective boosting visible-light-driven conversion of CO2 to CH4. Journal of Catalysis, 2020, 389, 440-449.	6.2	78
28	Design and Synthesis of 3D Ordered Macroporous CeO ₂ ‣upported Pt@CeO _{2â€Î́} Core–Shell Nanoparticle Materials for Enhanced Catalytic Activity of Soot Oxidation. Small, 2013, 9, 3957-3963.	10.0	76
29	Enhanced activity and sulfur resistance for soot combustion on three-dimensionally ordered macroporous-mesoporous MnxCe1-xOÎ/SiO2 catalysts. Applied Catalysis B: Environmental, 2019, 254, 246-259.	20.2	73
30	One-pot synthesis of core–shell Au@CeO2â~δ nanoparticles supported on three-dimensionally ordered macroporous ZrO2 with enhanced catalytic activity and stability for soot combustion. Catalysis Science and Technology, 2013, 3, 2958.	4.1	66
31	Z-scheme heterojunction of SnS2-decorated 3DOM-SrTiO3 for selectively photocatalytic CO2 reduction into CH4. Chinese Chemical Letters, 2020, 31, 2774-2778.	9.0	62
32	Structural and synergistic effects of three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported Pt nanoparticles on the catalytic performance for soot combustion. Applied Catalysis A: General, 2013, 453, 250-261.	4.3	60
33	High-efficient non-noble metal catalysts of 3D ordered macroporous perovskite-type La2NiB'O6 for soot combustion: Insight into the synergistic effect of binary Ni and B' sites. Applied Catalysis B: Environmental, 2020, 275, 119108.	20.2	59
34	Catalysts of self-assembled Pt@CeO _{2ⴴδ} -rich core–shell nanoparticles on 3D ordered macroporous Ce _{1â^'x} Zr _x O ₂ for soot oxidation: nanostructure-dependent catalytic activity. Nanoscale, 2017, 9, 4558-4571.	5.6	57
35	Fe/Beta@SBAâ€15 coreâ€shell catalyst: Interface stable effect and propene poisoning resistance for no abatement. AICHE Journal, 2018, 64, 3967-3978.	3.6	51
36	Facile synthesis of birnessite-type K2Mn4O8 and cryptomelane-type K2-xMn8O16 catalysts and their excellent catalytic performance for soot combustion with high resistance to H2O and SO2. Applied Catalysis B: Environmental, 2021, 285, 119779.	20.2	50

YUECHANG WEI

#	Article	IF	CITATIONS
37	Synergetic Effect of K Sites and Pt Nanoclusters in an Ordered Hierarchical Porous Pt-KMnO _{<i>x</i>} /Ce _{0.25} Zr _{0.75} O ₂ Catalyst for Boosting Soot Oxidation. ACS Catalysis, 2020, 10, 7123-7135.	11.2	47
38	Hierarchical Porous K-OMS-2/3DOM-m Ti _{0.7} Si _{0.3} O ₂ Catalysts for Soot Combustion: Easy Preparation, High Catalytic Activity, and Good Resistance to H ₂ O and SO ₂ . ACS Catalysis, 2021, 11, 5554-5571.	11.2	44
39	SO ₂ -Tolerant Catalytic Removal of Soot Particles over 3D Ordered Macroporous Al ₂ O ₃ -Supported Binary Pt–Co Oxide Catalysts. Environmental Science & Technology, 2020, 54, 6947-6956.	10.0	42
40	Exposed {0 0 1} facet of anatase TiO2 nanocrystals in Ag/TiO2 catalysts for boosting catalytic soot combustion: The facet-dependent activity. Journal of Catalysis, 2021, 398, 109-122.	6.2	39
41	Facile synthesis of three-dimensionally ordered macroporous LaFeO3-supported gold nanoparticle catalysts with high catalytic activity and stability for soot combustion. Catalysis Today, 2015, 245, 37-45.	4.4	38
42	The Z-scheme g-C3N4/3DOM-WO3 photocatalysts with enhanced activity for CO2 photoreduction into CO. Chinese Chemical Letters, 2022, 33, 939-942.	9.0	38
43	Ordered micro/macro porous K-OMS-2/SiO2 nanocatalysts: Facile synthesis, low cost and high catalytic activity for diesel soot combustion. Scientific Reports, 2017, 7, 43894.	3.3	37
44	Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion. Nano Research, 2022, 15, 7042-7051.	10.4	37
45	Insight into reaction pathways of CO2 photoreduction into CH4 over hollow microsphere Bi2MoO6-supported Au catalysts. Chemical Engineering Journal, 2022, 433, 133540.	12.7	33
46	Three-dimensional ordered macroporous perovskite-type La1–K NiO3 catalysts with enhanced catalytic activity for soot combustion: the Effect of K-substitution. Chinese Journal of Catalysis, 2019, 40, 722-732.	14.0	31
47	Engineered tungsten oxide-based photocatalysts for CO ₂ reduction: categories and roles. Journal of Materials Chemistry A, 2021, 9, 22781-22809.	10.3	29
48	Research advances of rare earth catalysts for catalytic purification of vehicle exhaustsÂâ^' Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. Journal of Rare Earths, 2021, 39, 1151-1180.	4.8	29
49	Catalysts of 3D ordered macroporous ZrO ₂ -supported coreâ€"shell Pt@CeO _{2â^'x} nanoparticles: effect of the optimized Ptâ€"CeO ₂ interface on improving the catalytic activity and stability of soot oxidation. Catalysis Science and Technology, 2017, 7 968-981	4.1	28
50	Boosting Catalytic Purification of Soot Particles over Double Perovskite-Type La _{2–<i>x</i>} K _{<i>x</i>} NiCoO ₆ Catalysts with an Ordered Macroporous Structure. Environmental Science & Technology, 2021, 55, 11245-11254.	10.0	28
51	Study on the coating of nano-particle and 3DOM LaCoO 3 perovskite-type complex oxide on cordierite monolith and the catalytic performances for soot oxidation: The effect of washcoat materials of alumina, silica and titania. Catalysis Today, 2017, 297, 131-142.	4.4	27
52	Three-dimensionally ordered macroporous K _{0.5} MnCeO _x /SiO ₂ catalysts: facile preparation and worthwhile catalytic performances for soot combustion. Catalysis Science and Technology, 2019, 9, 1372-1386.	4.1	27
53	Cu-SAPO-18 for NH ₃ -SCR Reaction: The Effect of Different Aging Temperatures on Cu ²⁺ Active Sites and Catalytic Performances. Industrial & Engineering Chemistry Research, 2019, 58, 2389-2395.	3.7	27
54	Fabrication of ultrafine Pd nanoparticles on 3D ordered macroporous TiO2 for enhanced catalytic activity during diesel soot combustion. Chinese Journal of Catalysis, 2018, 39, 606-612.	14.0	25

YUECHANG WEI

#	Article	IF	CITATIONS
55	Synthesis of K-doped three-dimensionally ordered macroporous Mn0.5Ce0.5Oδcatalysts and their catalytic performance for soot oxidation. Chinese Journal of Catalysis, 2015, 36, 1957-1967.	14.0	23
56	Efficient Catalysts of La ₂ O ₃ Nanorod-Supported Pt Nanoparticles for Soot Oxidation: The Role of La ₂ O ₃ -{110} Facets. Industrial & Engineering Chemistry Research, 2019, 58, 7074-7084.	3.7	22
57	Optimal exposed crystal facets of α-Mn2O3 catalysts with enhancing catalytic performance for soot combustion. Catalysis Today, 2021, 376, 229-238.	4.4	22
58	Synergistic effect of binary Co and Ni cations in hydrotalcite-derived Co2-xNixAlO catalysts for promoting soot combustion. Fuel, 2022, 320, 123888.	6.4	22
59	Optimized Pt-MnOx interface in Pt-MnOx/3DOM-Al2O3 catalysts for enhancing catalytic soot combustion. Chinese Chemical Letters, 2021, 32, 1447-1450.	9.0	21
60	Facilitating Catalytic Purification of Auto-Exhaust Carbon Particles via the Fe ₂ O ₃ {113} Facet-dependent Effect in Pt/Fe ₂ O ₃ Catalysts. Environmental Science & Technology, 2021, 55, 16153-16162.	10.0	18
61	3DOM SiO ₂ -Supported Different Alkali Metals-Modified MnOx Catalysts: Preparation and Catalytic Performance for Soot combustion. ChemistrySelect, 2017, 2, 10176-10185.	1.5	17
62	Ordered macro-mesoporous nanostructure of Pd/ZrO2 catalyst for boosting catalytic NO-assisted soot oxidation. Chemical Engineering Science, 2021, 239, 116635.	3.8	17
63	The heterojunction between 3D ordered macroporous TiO2 and MoS2 nanosheets for enhancing visible-light driven CO2 reduction. Journal of CO2 Utilization, 2021, 51, 101648.	6.8	15
64	Facile synthesis of 3D ordered macro-mesoporous Ce1-xZrxO2 catalysts with enhanced catalytic activity for soot oxidation. Catalysis Today, 2020, 355, 587-595.	4.4	14
65	Hetero-Metallic Active Sites in Omega (MAZ) Zeolite-Catalyzed Methane Partial Oxidation: A DFT Study. Industrial & Engineering Chemistry Research, 2021, 60, 2400-2409.	3.7	12
66	Fabrication of La1â^'Ca FeO3 perovskite-type oxides with macro-mesoporous structure via a dual-template method for highly efficient soot combustion. Journal of Rare Earths, 2020, 38, 369-375.	4.8	8
67	Preparation, characterization and catalytic performance of ordered macroporous-mesoporous SiO2-supported MnMOx catalysts for soot combustion. Catalysis Today, 2021, 364, 21-34.	4.4	8
68	Metal Ions (Li, Mg, Zn, Ce) Doped into La2O3 Nanorod for Boosting Catalytic Oxidative Coupling of Methane. Catalysts, 2022, 12, 713.	3.5	7
69	Breaking the scaling relationship <i>via</i> dual metal doping in a cobalt spinel for the OER: a computational prediction. Physical Chemistry Chemical Physics, 2020, 22, 18672-18680.	2.8	5
70	Metal-Support interaction modulate the sulfidation and dispersion of MoS2 slabs on hierarchical KNiMo ZnCrAl-Based multifunctional catalysts for selective conversion of syngas to higher alcohols. Chemical Engineering Journal, 2022, 440, 135831.	12.7	3
71	Preparation of 3DOM ZrTiO4 Support, WxCeMnOÎ/3DOM ZrTiO4 Catalysts, and Their Catalytic Performance for the Simultaneous Removal of Soot and NOx. Frontiers in Chemistry, 2022, 10, .	3.6	1