Ping Xu

List of Publications by Citations

Source: https://exaly.com/author-pdf/3121460/ping-xu-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14,983 65 116 232 h-index g-index citations papers 18,118 8.1 6.96 245 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
232	Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7965-72	16.4	811
231	Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & </i>	9.5	700
230	The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. <i>Applied Physics Letters</i> , 2011 , 98, 072906	3.4	520
229	Rational design of core-shell Co@C microspheres for high-performance microwave absorption. <i>Carbon</i> , 2017 , 111, 722-732	10.4	493
228	Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13426-13434	13	424
227	Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-Olbatteries. <i>Advanced Materials</i> , 2014 , 26, 1378-86	24	360
226	Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds. <i>CheM</i> , 2016 , 1, 699-726	16.2	358
225	Constructing Uniform Core-Shell PPy@PANI Composites with Tunable Shell Thickness toward Enhancement in Microwave Absorption. <i>ACS Applied Materials & District Research</i> , 7, 20090-9	9.5	343
224	Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 10443-8	3.4	308
223	Synergistic Phase and Disorder Engineering in 1T-MoSe Nanosheets for Enhanced Hydrogen-Evolution Reaction. <i>Advanced Materials</i> , 2017 , 29, 1700311	24	303
222	Tuning Mixed Nickel Iron Phosphosulfide Nanosheet Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution. <i>ACS Catalysis</i> , 2017 , 7, 8549-8557	13.1	215
221	Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. <i>Carbon</i> , 2016 , 98, 599-606	10.4	209
220	Morphology-Controlled Synthesis and Electromagnetic Properties of Porous Fe3O4 Nanostructures from Iron Alkoxide Precursors. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 12350-12357	3.8	203
219	Controlled Synthesis and Morphology-Dependent Electromagnetic Properties of Hierarchical Cobalt Assemblies. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 14826-14830	3.8	186
218	Controlled Synthesis of Hierarchical Nickel and Morphology-Dependent Electromagnetic Properties. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3196-3203	3.8	186
217	A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. <i>Chemical Communications</i> , 2013 , 49, 3291-3	5.8	185
216	Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. <i>Scientific Reports</i> , 2013 , 3, 2997	4.9	177

215	Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). <i>Journal of Alloys and Compounds</i> , 2016 , 681, 384-393	5.7	177	
214	MOFs-Derived Hollow Co/C Microspheres with Enhanced Microwave Absorption Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8904-8913	8.3	170	
213	The electromagnetic properties and microwave absorption of mesoporous carbon. <i>Materials Chemistry and Physics</i> , 2012 , 135, 884-891	4.4	164	
212	Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. <i>Carbon</i> , 2019 , 145, 701-711	10.4	159	
211	Multifunctional polymer-metal nanocomposites via direct chemical reduction by conjugated polymers. <i>Chemical Society Reviews</i> , 2014 , 43, 1349-60	58.5	159	
210	Pea-like Fe/FeC Nanoparticles Embedded in Nitrogen-Doped Carbon Nanotubes with Tunable Dielectric/Magnetic Loss and Efficient Electromagnetic Absorption. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 4268-4277	9.5	158	
209	Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 884-895	13	157	
208	Synthesis and Magnetic Properties of BaFe12O19 Hexaferrite Nanoparticles by a Reverse Microemulsion Technique. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 5866-5870	3.8	156	
207	Direct Transformation from Graphitic C3N4 to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. <i>ACS Applied Materials & Discourse Metal-Free Electrocatalyst</i> for Oxygen Reduction Reaction.	3 4·5	151	
206	S, N Dual-Doped Graphene-like Carbon Nanosheets as Efficient Oxygen Reduction Reaction Electrocatalysts. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 398-405	9.5	148	
205	Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. <i>Chemical Communications</i> , 2013 , 49, 3389-91	5.8	146	
204	Synthesis and Characterization of Novel Coralloid Polyaniline/BaFe12O19Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12603-12608	3.8	146	
203	Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 9523-31	3.4	142	
202	Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5037-5046	7.1	127	
201	2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. <i>Advanced Materials</i> , 2021 , 33, e1907818	24	119	
200	Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. <i>Journal of Applied Polymer Science</i> , 2013 , 130, 1909-1916	2.9	118	
199	Significantly Increased Raman Enhancement on MoX2 (X = S, Se) Monolayers upon Phase Transition. <i>Advanced Functional Materials</i> , 2017 , 27, 1606694	15.6	114	
198	Understanding the Phase-Induced Electrocatalytic Oxygen Evolution Reaction Activity on FeOOH Nanostructures. <i>ACS Catalysis</i> , 2019 , 9, 10705-10711	13.1	113	

197	Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. <i>Advanced Materials</i> , 2021 , 33, e2000086	24	112
196	Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. <i>Advanced Materials</i> , 2021 , 33, e2000381	24	108
195	Interfacially Engineered Sandwich-Like rGO/Carbon Microspheres/rGO Composite as an Efficient and Durable Microwave Absorber. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500684	4.6	107
194	Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production on CdS/CuS/g-CN Ternary Heterostructures. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 20404-20411	9.5	104
193	Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. Journal of Physical Chemistry B, 2008 , 112, 2775-81	3.4	102
192	Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9024-9037	7.1	100
191	One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li-O2 batteries. <i>Chemical Communications</i> , 2013 , 49, 10838-40	5.8	100
190	Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2495-2501		100
189	Surfactant-Assisted Solvothermal Synthesis of Ba(CoTi)xFe12🛘xO19 Nanoparticles and Enhancement in Microwave Absorption Properties of Polyaniline. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19600-19606	3.8	94
188	Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces. <i>ACS Applied Materials & ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	91
187	High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode. <i>Advanced Science</i> , 2016 , 3, 1600140	13.6	89
186	Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. <i>Chemical Engineering Journal</i> , 2019 , 372, 312-320	14.7	85
185	Polyaniline: A New Metal-Free Catalyst for Peroxymonosulfate Activation with Highly Efficient and Durable Removal of Organic Pollutants. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	85
184	Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. <i>Nanoscale</i> , 2018 , 10, 7291-7297	7.7	83
183	Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2016 , 27, 100-112	16.4	81
182	Human-Hair-Derived N, S-Doped Porous Carbon: An Enrichment and Degradation System for Wastewater Remediation in the Presence of Peroxymonosulfate. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2718-2727	8.3	81
181	Structure-Dependent Electrocatalytic Properties of Cu2O Nanocrystals for Oxygen Reduction Reaction. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 13872-13878	3.8	79
180	Optimizing Composition and Morphology for Large-Grain Perovskite Solar Cells via Chemical Control. <i>Chemistry of Materials</i> , 2015 , 27, 5570-5576	9.6	78

(2018-2012)

179	One-pot interfacial synthesis of Au nanoparticles and Aupolyaniline nanocomposites for catalytic applications. <i>CrystEngComm</i> , 2012 , 14, 1542	3.3	77
178	A study of the magnetic and electromagnetic properties of Fe2O3fhultiwalled carbon nanotubes (MWCNT) and Fe/Fe3CMWCNT composites. <i>Materials Chemistry and Physics</i> , 2009 , 114, 556-560	4.4	77
177	Bifunctional Nitrogen-Doped Microporous Carbon Microspheres Derived from Poly(o-methylaniline) for Oxygen Reduction and Supercapacitors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 3601-8	9.5	75
176	Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates. <i>Langmuir</i> , 2010 , 26, 8882-6	4	75
175	Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. Journal of Materials Chemistry C, 2018 , 6, 9615-9623	7.1	74
174	How to Reliably Report the Overpotential of an Electrocatalyst. ACS Energy Letters, 2020, 5, 1083-1087	20.1	70
173	Improved SOFC performance with continuously graded anode functional layer. <i>Electrochemistry Communications</i> , 2009 , 11, 1120-1123	5.1	70
172	Recent Advances in Conjugated Polymer-Based Microwave Absorbing Materials. <i>Polymers</i> , 2017 , 9,	4.5	68
171	Heterogeneous Interface Induced the Formation of Hierarchically Hollow Carbon Microcubes against Electromagnetic Pollution. <i>Small</i> , 2020 , 16, e2003407	11	68
170	Synthesis and microwave absorption enhancement of yolk@hell Fe3O4@C microspheres. <i>Journal of Materials Science</i> , 2017 , 52, 6349-6361	4.3	66
169	Study of the effects of nanometer ENi(OH)2 in nickel hydroxide electrodes. <i>Electrochimica Acta</i> , 2005 , 50, 2763-2769	6.7	66
168	The contribution of doped-Al to the colossal permittivity properties of AlxNb0.03Ti0.97NO2 rutile ceramics. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6798-6805	7.1	65
167	Gas transport in porous electrodes of solid oxide fuel cells: A review on diffusion and diffusivity measurement. <i>Journal of Power Sources</i> , 2013 , 237, 64-73	8.9	62
166	A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts. <i>Journal of Molecular Catalysis A</i> , 2012 , 357, 19-25		61
165	Metal Drganic Frameworks Derived Interconnected Bimetallic Metaphosphate Nanoarrays for Efficient Electrocatalytic Oxygen Evolution. <i>Advanced Functional Materials</i> , 2020 , 30, 1910498	15.6	60
164	Super-Poissonian statistics of photon emission from single CdSe-CdS core-shell nanocrystals coupled to metal nanostructures. <i>Physical Review Letters</i> , 2013 , 110, 117401	7.4	60
163	Preparation and microwave absorption properties of NiB alloy-coated Fe3O4 particles. <i>Journal of Alloys and Compounds</i> , 2008 , 464, 352-356	5.7	60
162	Ultrasmall Mo2C Nanoparticle-Decorated Carbon Polyhedrons for Enhanced Microwave Absorption. ACS Applied Nano Materials, 2018, 1, 5366-5376	5.6	60

161	Space-Confined Synthesis of Core-Shell BaTiO@Carbon Microspheres as a High-Performance Binary Dielectric System for Microwave Absorption. <i>ACS Applied Materials & Dielectric System</i> 11, 31182-3	1990	58
160	Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various pH values. <i>Applied Catalysis B: Environmental</i> , 2019 , 258, 117952	21.8	58
159	Unraveling the Raman Enhancement Mechanism on 1T'-Phase ReS Nanosheets. <i>Small</i> , 2018 , 14, e17040	7 <u>9</u> 1	56
158	Rational design and synthesis of SnO 2 -encapsulated \exists Fe 2 O 3 nanocubes as a robust and stable photo-Fenton catalyst. <i>Applied Catalysis B: Environmental</i> , 2017 , 210, 23-33	21.8	54
157	In Situ Surface-Enhanced Raman Spectroscopy Study of Plasmon-Driven Catalytic Reactions of 4-Nitrothiophenol under a Controlled Atmosphere. <i>ChemCatChem</i> , 2015 , 7, 1004-1010	5.2	53
156	Amino Acid-Assisted Synthesis of Hierarchical Silver Microspheres for Single Particle Surface-Enhanced Raman Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10007-10012	3.8	53
155	Solvent-Free Synthesis of Ultrafine Tungsten Carbide Nanoparticles-Decorated Carbon Nanosheets for Microwave Absorption. <i>Nano-Micro Letters</i> , 2020 , 12, 153	19.5	53
154	Ultrasmall MnO Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes as Efficient Anode Materials for Sodium Ion Batteries. <i>ACS Applied Materials & Acs Applied & Acs Applied Materials & Acs Applied & Acs Ap</i>	9.5	51
153	Self-supported Pt nanoclusters via galvanic replacement from Cu2O nanocubes as efficient electrocatalysts. <i>Nanoscale</i> , 2013 , 5, 7397-402	7.7	51
152	Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5086-5096	13	51
151	Synthesis of polyaniline nanofibers with high electrical conductivity from CTABBDBS mixed surfactants. <i>Materials Letters</i> , 2011 , 65, 3601-3604	3.3	50
150	Facile Synthesis of Polyaniline-Polypyrrole Nanofibers for Application in Chemical Deposition of Metal Nanoparticles. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1392-1397	4.8	49
149	Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS by cobalt doping. <i>Chemical Communications</i> , 2017 , 53, 8199-8202	5.8	48
148	Synthesis and characterization of CoBn substituted barium ferrite particles by a reverse microemulsion technique. <i>Materials Research Bulletin</i> , 2011 , 46, 643-648	5.1	48
147	A novel water-stable MOF Zn(Py)(Atz) as heterogeneous catalyst for chemical conversion of CO2 with various epoxides under mild conditions. <i>Journal of CO2 Utilization</i> , 2020 , 35, 216-224	7.6	48
146	Porous Zn(Bmic)(AT) MOF with Abundant Amino Groups and Open Metal Sites for Efficient Capture and Transformation of CO. <i>Inorganic Chemistry</i> , 2019 , 58, 13917-13926	5.1	47
145	Stepwise Electrochemical Construction of FeOOH/Ni(OH)2 on Ni Foam for Enhanced Electrocatalytic Oxygen Evolution. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3927-3935	6.1	45
144	Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. <i>Chemical Engineering Journal</i> , 2020 , 387, 124159	14.7	44

(2018-2010)

143	Synthesis of homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7222		44
142	Fabrication of thorny Au nanostructures on polyaniline surfaces for sensitive surface-enhanced Raman spectroscopy. <i>ACS Applied Materials & Distriction</i> , 1985, 19	9.5	43
141	Effect of stoichiometry on the phase formation and magnetic properties of BaFe12O19 nanoparticles by reverse micelle technique. <i>Materials Letters</i> , 2008 , 62, 1305-1308	3.3	43
140	Preparation of YSZ thin films for intermediate temperature solid oxide fuel cells by dip-coating method. <i>Journal of Membrane Science</i> , 2008 , 320, 500-504	9.6	42
139	Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. <i>Carbon</i> , 2020 , 168, 404-414	10.4	42
138	Understanding and Controlled Growth of Silver Nanoparticles Using Oxidized N-Methyl-pyrrolidone as a Reducing Agent. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 36-40	3.8	41
137	Enhanced photocatalytic activity on polarized ferroelectric KNbO3. RSC Advances, 2016, 6, 108883-1088	8 8 7⁄7	40
136	Effect of equivalent and non-equivalent Al substitutions on the structure and electrochemical properties of LiNi0.5Mn0.5O2. <i>Journal of Power Sources</i> , 2008 , 176, 325-331	8.9	40
135	Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers. <i>Nanoscale</i> , 2010 , 2, 1436-40	7.7	39
134	Synthesis and characterization of nanostructured polypyrroles: Morphology-dependent electrochemical responses and chemical deposition of Au nanoparticles. <i>Polymer</i> , 2009 , 50, 2624-2629	3.9	39
133	Facile Synthesis and Electrical Properties of Silver Wires through Chemical Reduction by Polyaniline. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 22147-22154	3.8	37
132	Ultrafast Surface-Plasmon-Induced Photodimerization of p-Aminothiophenol on Ag/TiO2 Nanoarrays. <i>ChemCatChem</i> , 2016 , 8, 1819-1824	5.2	37
131	Enhanced Electrocatalytic Oxygen Evolution Activity by Tuning Both the Oxygen Vacancy and Orbital Occupancy of B-Site Metal Cation in NdNiO3. <i>Advanced Functional Materials</i> , 2019 , 29, 1902449	15.6	35
130	Conjugated polymer-mediated synthesis of nitrogen-doped carbon nanoribbons for oxygen reduction reaction. <i>Carbon</i> , 2017 , 124, 630-636	10.4	35
129	Polymer-assisted preparation of metal nanoparticles with controlled size and morphology. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2550-2554		35
128	Mechanistic study of silver nanoparticle formation on conducting polymer surfaces. <i>Langmuir</i> , 2011 , 27, 4979-85	4	35
127	Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. <i>Nano Research</i> , 2018 , 11, 2573-2585	10	34
126	High-Performance SERS Substrate Based on Hierarchical 3D Cu Nanocrystals with Efficient Morphology Control. <i>Small</i> , 2018 , 14, e1802477	11	34

125	Recent Advances in Magnetic Field-Enhanced Electrocatalysis. <i>ACS Applied Energy Materials</i> , 2020 , 3, 10303-10316	6.1	33
124	Template synthesis of nitrogen-doped carbon nanocages and catalyst for activation of peroxymonosulfate. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1849-1860	6.8	33
123	Phenyl-Bridged Graphitic Carbon Nitride with a Porous and Hollow Sphere Structure to Enhance Dissociation of Photogenerated Charge Carriers and Visible-Light-Driven H Generation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 41527-41537	9.5	33
122	Origin of the Ultrafast Response of the Lateral Photovoltaic Effect in Amorphous MoS/Si Junctions. <i>ACS Applied Materials & Damp; Interfaces</i> , 2017 , 9, 18362-18368	9.5	32
121	The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixation of CO2 under solvent-free conditions. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 317-325	6.8	32
120	Metal-free nitrogen-doped carbon nanoribbons as highly efficient electrocatalysts for oxygen reduction reaction. <i>Carbon</i> , 2017 , 124, 34-41	10.4	32
119	Solvent-free synthesis of hexagonal barium ferrite (BaFe12O19) particles. <i>Journal of Materials Science</i> , 2010 , 45, 2442-2448	4.3	32
118	Mild hydrothermal synthesis of hexagonal CuS nanoplates. <i>Journal of Crystal Growth</i> , 2008 , 310, 5437-5	446	32
117	A confined thicroreactor synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes. <i>Journal of Power Sources</i> , 2018 , 378, 105-111	8.9	31
116	A crystallinellmorphous NiNi(OH)2 corellhell catalyst for the alkaline hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23323-23329	13	31
115	Heteroatom-Doped Carbon Nanostructures Derived from Conjugated Polymers for Energy Applications. <i>Polymers</i> , 2016 , 8,	4.5	31
114	Erradiation induced one-step synthesis of electromagnetic functionalized reduced graphene oxide N i nanocomposites. <i>RSC Advances</i> , 2014 , 4, 30467-30470	3.7	30
113	Effect of ultrasonic irradiation on the structure and electrochemical properties of cathode material LiNi0.5Mn0.5O2 for lithium batteries. <i>Solid State Ionics</i> , 2007 , 178, 1230-1234	3.3	30
112	Phase-Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 259-267	16.4	30
111	Characterization of an ultrafine Ehickel hydroxide from supersonic co-precipitation method. Journal of Alloys and Compounds, 2007 , 436, 369-374	5.7	29
110	Effect of crystallinity on the electrochemical performance of nanometer Al-stabilized hickel hydroxide. <i>Journal of Alloys and Compounds</i> , 2008 , 462, 164-169	5.7	28
109	Prussian Blue Microcrystals with Morphology Evolution as a High-Performance Photo-Fenton Catalyst for Degradation of Organic Pollutants. <i>ACS Applied Materials & Degradation of Organic Pollutants</i> .	1984	28
108	Homogeneous Metal Nitrate Hydroxide Nanoarrays Grown on Nickel Foam for Efficient Electrocatalytic Oxygen Evolution. <i>Small</i> , 2018 , 14, e1803783	11	28

(2012-2019)

107	Mixed Titanium Oxide Strategy for Enhanced Photocatalytic Hydrogen Evolution. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 18475-18482	9.5	27	
106	Precursor-directed synthesis of quasi-spherical barium ferrite particles with good dispersion and magnetic properties. <i>CrystEngComm</i> , 2013 , 15, 808-815	3.3	27	
105	Morphology and physico-electrochemical properties of poly(aniline-co-pyrrole). <i>Synthetic Metals</i> , 2009 , 159, 430-434	3.6	27	
104	Cycloaddition of Carbon Dioxide to Epoxides for the Synthesis of Cyclic Carbonates with a Mixed Catalyst of Layered Double Hydroxide and Tetrabutylammonium Bromide at Ambient Temperature. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 335-344	5.6	27	
103	Fluorescent features of CdTe nanorods grafted to graphene oxide through an amidation process. Journal of Materials Chemistry, 2011 , 21, 11283		26	
102	Structural and electrochemical properties of LiNi0.5Mn0.5MAlxO2 (x=0, 0.02, 0.05, 0.08, and 0.1) cathode materials for lithium-ion batteries. <i>Solid State Ionics</i> , 2009 , 180, 398-404	3.3	26	
101	Anion-Induced Size Selection of EMo2C Supported on Nitrogen-Doped Carbon Nanotubes for Electrocatalytic Hydrogen Evolution. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11922-11929	8.3	25	
100	Ultrafine CoO nanoparticles as an efficient cocatalyst for enhanced photocatalytic hydrogen evolution. <i>Nanoscale</i> , 2019 , 11, 15633-15640	7.7	25	
99	Development of Conjugated Polymers for Memory Device Applications. <i>Polymers</i> , 2017 , 9,	4.5	25	
98	Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution. <i>Carbon</i> , 2021 , 174, 673-682	10.4	25	
97	Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. <i>Nano Energy</i> , 2021 , 80, 105540	17.1	25	
96	Low Ru loading RuO2/(Co,Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120442	21.8	25	
95	Precursor-directed synthesis of porous cobalt assemblies with tunable close-packed hexagonal and face-centered cubic phases for the effective enhancement in microwave absorption. <i>Journal of Materials Science</i> , 2017 , 52, 4399-4411	4.3	24	
94	Preparation and electromagnetic properties of multiwalled carbon nanotubes/Ni composites by Erradiation technique. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2010 , 167, 1-5	3.1	24	
93	Fabrication of uniform Ru-doped NiFeO nanosheets as an efficient hydrogen evolution electrocatalyst. <i>Chemical Communications</i> , 2019 , 55, 14649-14652	5.8	24	
92	Dual hydrogen-bond donor group-containing Zn-MOF for the highly effective coupling of CO2 and epoxides under mild and solvent-free conditions. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 1995-2005	6.8	23	
91	In Situ Growth of Amorphous Fe(OH) on Nickel Nitrate Hydroxide Nanoarrays for Enhanced Electrocatalytic Oxygen Evolution. <i>ACS Applied Materials & District Research</i> , 12, 12668-12676	9.5	23	
90	Low-Temperature Synthesis of Au/Polyaniline Nanocomposites: Toward Controlled Size, Morphology, and Size Dispersity. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 11272-11277	3.8	23	

89	An in situ SERS study of substrate-dependent surface plasmon induced aromatic nitration. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5285-5291	7.1	21
88	Single-Nanocrystal Photoluminescence Spectroscopy Studies of Plasmon-Multiexciton Interactions at Low Temperature. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1465-70	6.4	21
87	Sequential chemical deposition of metal alloy jellyfish using polyaniline: redox chemistry at the metal-polymer interface. <i>Chemical Communications</i> , 2011 , 47, 10764-6	5.8	21
86	Differential shrinkage induced formation of yolk-shell carbon microspheres toward enhanced microwave absorption. <i>Applied Physics Letters</i> , 2017 , 111, 133103	3.4	20
85	Magnetic and electromagnetic properties of composites of iron oxide and CoB alloy prepared by chemical reduction. <i>Journal of Magnetism and Magnetic Materials</i> , 2011 , 323, 14-21	2.8	20
84	Formation of Ag nanoparticles on water-soluble anatase TiO2 clusters and the activation of photocatalysis. <i>Catalysis Communications</i> , 2009 , 10, 1052-1056	3.2	20
83	Improved Interface Charge Transfer and Redistribution in CuO-CoOOH p-n Heterojunction Nanoarray Electrocatalyst for Enhanced Oxygen Evolution Reaction. <i>Advanced Science</i> , 2021 , 8, e21033	143.6	20
82	Recent Advances in Plasmon-Promoted Organic Transformations Using Silver-Based Catalysts. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 12, 54266-54284	9.5	20
81	Highly Selective Electrocatalytic Reduction of CO into Methane on Cu-Bi Nanoalloys. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 7261-7266	6.4	20
80	Phase transition induced Raman enhancement on vanadium dioxide (VO2) nanosheets. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10855-10860	7.1	20
79	Sustainability Perspective-Oriented Synthetic Strategy for Zinc Single-Atom Catalysts Boosting Electrocatalytic Reduction of Carbon Dioxide and Oxygen. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 13813-13822	8.3	18
78	SERS-Based Plasmon-Driven Reaction and Molecule Detection on a Single Ag@MoS2 Microsphere: Effect of Thickness and Crystallinity of MoS2. <i>ChemCatChem</i> , 2018 , 10, 3520-3525	5.2	18
77	Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22867-73	3.6	17
76	Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications. <i>CrystEngComm</i> , 2012 , 14, 4952	3.3	17
75	Field-Assisted Synthesis and Electromagnetic Properties of Aligned Magnetic Nanostructures by Brradiation Induced Reduction. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21214-21218	3.8	17
74	Controlled Synthesis of Hollow Bimetallic Prussian Blue Analog for Conversion into Efficient Oxygen Evolution Electrocatalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 1319-1328	8.3	17
73	A High-Performance Zinc-Organic Framework with Accessible Open Metal Sites Catalyzes CO2 and Styrene Oxide into Styrene Carbonate under Mild Conditions. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 2795-2803	8.3	17
72	Tuning the SERS activity and plasmon-driven reduction of p-nitrothiophenol on a Ag@MoS film. Faraday Discussions, 2019 , 214, 297-307	3.6	16

71	Pearson's principle-inspired strategy for the synthesis of amorphous transition metal hydroxide hollow nanocubes for electrocatalytic oxygen evolution. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1523-15	52 8 8	16
70	Controlled synthesis and morphology-dependent electromagnetic properties of nickel nanostructures by Fray irradiation technique. <i>Radiation Physics and Chemistry</i> , 2011 , 80, 390-393	2.5	16
69	FeMoO nanorods for efficient ambient electrochemical nitrogen reduction. <i>Chemical Communications</i> , 2020 , 56, 6834-6837	5.8	15
68	Fabrication of arrayed triangular micro-cavities for SERS substrates using the force modulated indention process. <i>RSC Advances</i> , 2017 , 7, 11969-11978	3.7	14
67	Hydrothermal synthesis of ternary MoS2xSe2(1☑) nanosheets for electrocatalytic hydrogen evolution. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1386-1390	6.8	14
66	Insight into Mn and Ni doping of Ni1-Mn PS3 and Mn1-Ni PS3 nanosheets on electrocatalytic hydrogen and oxygen evolution activity. <i>Journal of Alloys and Compounds</i> , 2018 , 769, 532-538	5.7	14
65	Dynamic Evolution of Polar Regions in KTa0.56Nb0.44O3 near the Para-Ferroelectric Phase Transition. <i>Crystal Growth and Design</i> , 2019 , 19, 1041-1047	3.5	14
64	A double-layered carbon nanotube array with super-hydrophobicity. <i>Carbon</i> , 2009 , 47, 3332-3336	10.4	14
63	Galvanic replacement-mediated synthesis of hollow Cu2OAu nanocomposites and Au nanocages for catalytic and SERS applications. <i>RSC Advances</i> , 2015 , 5, 76101-76106	3.7	13
62	Morphology Control of Cu Crystals on Modified Conjugated Polymer Surfaces. <i>Crystal Growth and Design</i> , 2012 , 12, 1778-1784	3.5	13
61	Magnetic and dielectric properties of barium titanate-coated barium ferrite. <i>Journal of Alloys and Compounds</i> , 2009 , 476, 560-565	5.7	13
60	Novel HBD-Containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions. <i>Green Energy and Environment</i> , 2021 , 6, 66-74	5.7	13
59	Hollow FeCo-FeCoP@C nanocubes embedded in nitrogen-doped carbon nanocages for efficient overall water splitting. <i>Journal of Energy Chemistry</i> , 2021 , 53, 1-8	12	13
58	Dual-Enhanced Doping in ReSe for Efficiently Photoenhanced Hydrogen Evolution Reaction. <i>Advanced Science</i> , 2020 , 7, 2000216	13.6	12
57	Hollow transition metal hydroxide octahedral microcages for single particle surface-enhanced Raman spectroscopy. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 2318-2324	6.8	12
56	Effect of Ni(OH)2 coating on the electromagnetic properties of hexagonal barium ferrite. <i>Materials Chemistry and Physics</i> , 2008 , 108, 196-200	4.4	12
55	Understanding the Effect of Second Metal on CoM (M = Ni, Cu, Zn) Metal-Organic Frameworks for Electrocatalytic Oxygen Evolution Reaction. <i>Small</i> , 2021 , 17, e2105150	11	12
54	In situ Raman monitoring of [2+2] cycloaddition of pyridine substituted olefins induced by visible laser. <i>Chemical Communications</i> , 2014 , 50, 15631-3	5.8	11

53	Chemical deposition of Ag nanostructures on polypyrrole films as active SERS substrates. <i>RSC Advances</i> , 2014 , 4, 7202	3.7	11
52	Anchoring porous carbon nanoparticles on carbon nanotubes as a high-performance composite with a unique core-sheath structure for electromagnetic pollution precaution. <i>Journal of Materials Chemistry A</i> ,	13	11
51	Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution. <i>Journal of Materials Science and Technology</i> , 2021 , 93, 7-16	9.1	11
50	Fe and B Codoped Nickel Zinc Layered Double Hydroxide for Boosting the Oxygen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 2931-2938	8.3	10
49	Facile One-Pot Synthesis of Zn/Mg-MOF-74 with Unsaturated Coordination Metal Centers for Efficient CO Adsorption and Conversion to Cyclic Carbonates <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 61334-61345	9.5	10
48	Phase-junction engineering boosts the performance of CoSe2 for efficient sodium/potassium storage. <i>Journal of Materials Chemistry A</i> ,	13	10
47	B-Doped and NH2-functionalized SBA-15 with hydrogen bond donor groups for effective catalysis of CO2 cycloaddition to epoxides. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 3636-3645	6.8	10
46	Fabrication of PPy Nanosphere/rGO Composites via a Facile Self-Assembly Strategy for Durable Microwave Absorption. <i>Polymers</i> , 2018 , 10,	4.5	10
45	Quantum dot-induced improved performance of cadmium telluride (CdTe) solar cells without a Cu buffer layer. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4904-4911	13	9
44	Galvanic replacement mediated synthesis of rGOMn3O4Pt nanocomposites for the oxygen reduction reaction. <i>RSC Advances</i> , 2016 , 6, 89124-89129	3.7	9
43	SERS-active silver nanoparticle assemblies on branched Cu2O crystals through controlled galvanic replacement. <i>RSC Advances</i> , 2014 , 4, 53543-53546	3.7	9
42	Response to Comment on The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material [Appl. Phys. Lett. 100, 046101 (2012)]. <i>Applied Physics Letters</i> , 2012 , 100, 046102	3.4	9
41	Regulating Electron Redistribution of Intermetallic Iridium Oxide by Incorporating Ru for Efficient Acidic Water Oxidation. <i>Advanced Energy Materials</i> ,2102883	21.8	9
40	A facile fabrication of a multi-functional and hierarchical Zn-based MOF as an efficient catalyst for CO2 fixation at room-temperature. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 3085-3095	6.8	9
39	Fabrication of H-TiO2/CdS/Cu2-xS Ternary Heterostructures for Enhanced Photocatalytic Hydrogen Production. <i>ChemistrySelect</i> , 2017 , 2, 2681-2686	1.8	8
38	Photothermally Enhanced Plasmon-Driven Catalysis on Fe5C2@Au CoreBhell Nanostructures. <i>ChemCatChem</i> , 2018 , 10, 1084-1088	5.2	8
37	Gamma irradiation induced synthesis of electromagnetic functionalized aligned CoxNi1⊠ alloy nanobundles. <i>RSC Advances</i> , 2016 , 6, 72263-72268	3.7	7
36	Conjugated polymer mediated synthesis of nanoparticle clusters and core/shell nanoparticles. <i>Polymer</i> , 2013 , 54, 485-489	3.9	6

35	Crystalline-Amorphous Ni P O /NiMoO Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In Situ Surface Reconstruction <i>Small</i> , 2022 , e2105972	11	6
34	Magnetic field assisted electrocatalytic oxygen evolution reaction of nickel-based materials. Journal of Materials Chemistry A, 2022 , 10, 1760-1767	13	6
33	Insight into the influence of donor-acceptor system on graphitic carbon nitride nanosheets for transport of photoinduced charge carriers and photocatalytic H generation. <i>Journal of Colloid and Interface Science</i> , 2021 , 601, 326-337	9.3	6
32	C(OH) and Its Nanocomposite for High-Performance Lithium Storage. ACS Nano, 2020, 14, 1600-1608	16.7	5
31	Interfacial synthesis of lollipop-like Aupolyaniline nanocomposites for catalytic applications. <i>RSC Advances</i> , 2016 , 6, 81983-81988	3.7	5
30	Fast fabrication of homogeneous Ag nanostructures on dual-acid doped polyaniline for SERS applications. <i>RSC Advances</i> , 2014 , 4, 16121-16126	3.7	5
29	Dicationic Ionic Liquid @MIL-101 for the Cycloaddition of CO2 and Epoxides under Cocatalyst-free Conditions. <i>Crystal Growth and Design</i> , 2021 , 21, 3689-3698	3.5	5
28	Carbon Dioxide Activation and Conversion by Hyperbranched Polyethylenimine/ZnI2 Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 872-878	3.9	5
27	Cotton cloth supported tungsten carbide/carbon nanocomposites as a Janus film for solar driven interfacial water evaporation. <i>Journal of Materials Chemistry A</i> ,	13	5
26	Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film. <i>Nanophotonics</i> , 2019 , 8, 1533-1546	6.3	4
25	Electrostatic Interaction-Based High Tissue Adhesive, Stretchable Microelectrode Arrays for the Electrophysiological Interface ACS Applied Materials & Interfaces, 2022,	9.5	4
24	Site-Selective Chlorination of Graphene through Laser-Induced In Situ Decomposition of AgCl Nanoparticles. <i>ChemNanoMat</i> , 2016 , 2, 515-519	3.5	3
23	Enhanced Photocatalytic Activity of Titanium Dioxide: Modification with Graphene Oxide and Reduced Graphene Oxide. <i>Chemistry Letters</i> , 2014 , 43, 871-873	1.7	3
22	Microstructure evolution and magnetic properties of CoB coatings electrolessly plated on hollow microspheres. <i>Applied Surface Science</i> , 2009 , 255, 6125-6131	6.7	3
21	Acid-directed morphology control of molybdenum carbide embedded in a nitrogen doped carbon matrix for enhanced electrocatalytic hydrogen evolution. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 3620-3	36 2 6	3
20	In Situ Raman Monitoring of Silver(I)-Aided Laser-Driven Cleavage Reaction of Cyclobutane. <i>ChemPhysChem</i> , 2016 , 17, 46-50	3.2	3
19	Study of Surface Plasmon Assisted Reactions to Understand the Light-Induced Decarboxylation of N719 Sensitizer. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 23-28	2.3	3
18	Phase-Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie, 2021, 133, 263-271	3.6	3

17	Aminoethylimidazole ionic liquid-grafted MIL-101-NH2 heterogeneous catalyst for the conversion of CO2 and epoxide without solvent and cocatalyst. <i>New Journal of Chemistry</i> , 2021 , 45, 13893-13901	3.6	3
16	Morphology control of Cu and Cu2O through electrodeposition on conducting polymer electrodes. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 1449-1454	6.8	3
15	Surface reconstruction of phosphorus-doped cobalt molybdate microarrays in electrochemical water splitting. <i>Chemical Engineering Journal</i> , 2022 , 446, 137094	14.7	3
14	Synthesis of Porous Mo2C/Nitrogen-Doped Carbon Nanocomposites for Efficient Hydrogen Evolution Reaction. <i>ChemistrySelect</i> , 2020 , 5, 14307-14311	1.8	2
13	Fe3+-Exchanged Titanate Nanotubes: A New Kind of Highly Active Heterogeneous Catalyst for Friedel-Crafts Type Benzylation. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-9	3.2	2
12	Recent advance in laser-induced chemical reactions investigated by & lt;italic>in-situ</italic> Raman spectroscopy. <i>Scientia Sinica Chimica</i> , 2017 , 47, 713-723	1.6	2
11	Embedding activated carbon nanospheres into polymer-derived porous carbon networks to boost electrocatalytic oxygen reduction. <i>Chemical Communications</i> , 2020 , 56, 9791-9794	5.8	2
10	NiSe@Ni1NFexSe2 CoreBhell Nanostructures as a Bifunctional Water Splitting Electrocatalyst in Alkaline Media. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100071	1.6	2
9	Graphene Composite Catalysts for Electrochemical Energy Conversion 2018, 203-230		1
8	Gamma-irradiation induced direct fabrication of SERS-active Ag nanoparticles on glass substrates. <i>RSC Advances</i> , 2014 , 4, 20247-20251	3.7	1
7	Catalyst Nanomaterials. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-2	3.2	1
6	Electrocatalysts: 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis (Adv. Mater. 6/2021). <i>Advanced Materials</i> , 2021 , 33, 2170045	24	1
5	Plasmonic Heating-Promoted Photothermal Synthesis of Ecyanoacrylonitriles Over Au/h-BN Catalysts. <i>Frontiers in Chemistry</i> , 2021 , 9, 732162	5	1
4	Magnetic Field Enhanced Electrocatalytic Oxygen Evolution of NiFe-LDH/Co O p-n Heterojunction Supported on Nickel Foam <i>Small Methods</i> , 2022 , e2200084	12.8	1
3	Electrocatalysis: Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions (Adv. Mater. 6/2021). <i>Advanced Materials</i> , 2021 , 33, 2170042	24	0
2	In situ SERS monitored photoactive yellow protein (PYP) chromophore model elimination, nano-catalyzed phenyl redox and I2 addition reactions. <i>RSC Advances</i> , 2016 , 6, 111144-111147	3.7	
1	homogeneous defect distribution of triangular WS monolayer revealed by surface-enhanced and o-enhanced revealed Raman and photoluminescence spectroscopy <i>Journal of Chemical Physics</i> , 2022 , 156, 034702		