Jay Shendure

List of Publications by Citations

Source: https://exaly.com/author-pdf/3121316/jay-shendure-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61,480 246 358 123 h-index g-index citations papers 400 77,423 20.5 7.91 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
358	A general framework for estimating the relative pathogenicity of human genetic variants. <i>Nature Genetics</i> , 2014 , 46, 310-5	36.3	3626
357	Next-generation DNA sequencing. <i>Nature Biotechnology</i> , 2008 , 26, 1135-45	44.5	3040
356	Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. <i>Nature</i> , 2012 , 485, 246-50	50.4	1587
355	Exome sequencing identifies the cause of a mendelian disorder. <i>Nature Genetics</i> , 2010 , 42, 30-5	36.3	1573
354	Targeted capture and massively parallel sequencing of 12 human exomes. <i>Nature</i> , 2009 , 461, 272-6	50.4	1573
353	The contribution of de novo coding mutations to autism spectrum disorder. <i>Nature</i> , 2014 , 515, 216-21	50.4	1470
352	The complete genome sequence of a Neanderthal from the Altai Mountains. <i>Nature</i> , 2014 , 505, 43-9	50.4	1339
351	A high-coverage genome sequence from an archaic Denisovan individual. <i>Science</i> , 2012 , 338, 222-6	33.3	1276
350	Exome sequencing as a tool for Mendelian disease gene discovery. <i>Nature Reviews Genetics</i> , 2011 , 12, 745-55	30.1	1265
349	CADD: predicting the deleteriousness of variants throughout the human genome. <i>Nucleic Acids Research</i> , 2019 , 47, D886-D894	20.1	1165
348	Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. <i>Nature Genetics</i> , 2010 , 42, 790-3	36.3	1041
347	Accurate multiplex polony sequencing of an evolved bacterial genome. <i>Science</i> , 2005 , 309, 1728-32	33.3	1011
346	Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. <i>Nature Genetics</i> , 2012 , 44, 1104-10	36.3	919
345	Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. <i>Nature Genetics</i> , 2011 , 43, 585-9	36.3	899
344	Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. <i>Science</i> , 2012 , 338, 1619-22	33.3	892
343	Target-enrichment strategies for next-generation sequencing. <i>Nature Methods</i> , 2010 , 7, 111-8	21.6	863
342	The single-cell transcriptional landscape of mammalian organogenesis. <i>Nature</i> , 2019 , 566, 496-502	50.4	826

341	Analysis of genetic inheritance in a family quartet by whole-genome sequencing. <i>Science</i> , 2010 , 328, 63	6 3 93.3	822
340	Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. <i>Nature</i> , 2013 , 493, 216-20	50.4	723
339	A three-dimensional model of the yeast genome. <i>Nature</i> , 2010 , 465, 363-7	50.4	722
338	Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. <i>Science</i> , 2015 , 348, 910-4	33.3	668
337	Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. <i>Cell</i> , 2016 , 164, 57-68	56.2	664
336	Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. <i>Nature Biotechnology</i> , 2013 , 31, 1119-25	44.5	650
335	Comprehensive single-cell transcriptional profiling of a multicellular organism. Science, 2017, 357, 661-	6<u>6</u>7 .3	645
334	De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. <i>Nature Genetics</i> , 2012 , 44, 934-40	36.3	521
333	Genome evolution in the allotetraploid frog Xenopus laevis. <i>Nature</i> , 2016 , 538, 336-343	50.4	510
332	Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. <i>Nature Genetics</i> , 2013 , 45, 825-30	36.3	500
331	Diversity of human copy number variation and multicopy genes. Science, 2010 , 330, 641-6	33.3	491
330	DNA sequencing at 40: past, present and future. <i>Nature</i> , 2017 , 550, 345-353	50.4	486
329	Disruptive CHD8 mutations define a subtype of autism early in development. <i>Cell</i> , 2014 , 158, 263-276	56.2	467
328	Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. <i>GigaScience</i> , 2013 , 2, 10	7.6	461
327	Advanced sequencing technologies: methods and goals. <i>Nature Reviews Genetics</i> , 2004 , 5, 335-44	30.1	440
326	The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. <i>American Journal of Human Genetics</i> , 2015 , 97, 199-215	11	432
325	Classification and characterization of microsatellite instability across 18 cancer types. <i>Nature Medicine</i> , 2016 , 22, 1342-1350	50.5	432
324	Refining analyses of copy number variation identifies specific genes associated with developmental delay. <i>Nature Genetics</i> , 2014 , 46, 1063-71	36.3	429

323	Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. <i>Nature Medicine</i> , 2016 , 22, 369-78	50.5	425
322	Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. <i>Nature Reviews Genetics</i> , 2011 , 12, 628-40	30.1	423
321	Whole-organism lineage tracing by combinatorial and cumulative genome editing. <i>Science</i> , 2016 , 353, aaf7907	33.3	409
320	Joint profiling of chromatin accessibility and gene expression in thousands of single cells. <i>Science</i> , 2018 , 361, 1380-1385	33.3	381
319	Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. <i>Genome Biology</i> , 2010 , 11, R119	18.3	377
318	Massively parallel functional dissection of mammalian enhancers in vivo. <i>Nature Biotechnology</i> , 2012 , 30, 265-70	44.5	366
317	Multiplex amplification of large sets of human exons. <i>Nature Methods</i> , 2007 , 4, 931-6	21.6	357
316	Fragment Length of Circulating Tumor DNA. <i>PLoS Genetics</i> , 2016 , 12, e1006162	6	349
315	The 4D nucleome project. <i>Nature</i> , 2017 , 549, 219-226	50.4	332
314	A Single-Cell Atlas of InDivo Mammalian Chromatin Accessibility. <i>Cell</i> , 2018 , 174, 1309-1324.e18	56.2	331
313	A de novo convergence of autism genetics and molecular neuroscience. <i>Trends in Neurosciences</i> , 2014 , 37, 95-105	13.3	327
312	Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. <i>Nature Genetics</i> , 2017 , 49, 643-650	36.3	323
311	Massively multiplex single-cell Hi-C. <i>Nature Methods</i> , 2017 , 14, 263-266	21.6	308
310	Accurate classification of BRCA1 variants with saturation genome editing. <i>Nature</i> , 2018 , 562, 217-222	50.4	308
309	Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. <i>Nature Biotechnology</i> , 2018 , 36, 442-450	44.5	299
308	Noninvasive whole-genome sequencing of a human fetus. Science Translational Medicine, 2012, 4, 137 ra	1 716 7.5	294
307	Decoding long nanopore sequencing reads of natural DNA. <i>Nature Biotechnology</i> , 2014 , 32, 829-33	44.5	291
306	Long-read sequence assembly of the gorilla genome. <i>Science</i> , 2016 , 352, aae0344	33.3	282

305	Somatic mutations in cerebral cortical malformations. New England Journal of Medicine, 2014, 371, 733-4	43 9.2	265
304	Global survey of escape from X inactivation by RNA-sequencing in mouse. <i>Genome Research</i> , 2010 , 20, 614-22	9.7	261
303	Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. <i>Molecular Cell</i> , 2012 , 48, 760-70	17.6	257
302	TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. <i>Nature Genetics</i> , 2012 , 44, 916-21	36.3	257
301	GRIN2A mutations cause epilepsy-aphasia spectrum disorders. <i>Nature Genetics</i> , 2013 , 45, 1073-6	36.3	249
300	The million mutation project: a new approach to genetics in Caenorhabditis elegans. <i>Genome Research</i> , 2013 , 23, 1749-62	9.7	249
299	Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. <i>Molecular Cell</i> , 2018 , 71, 858-871.e8	17.6	247
298	High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. <i>Nature Biotechnology</i> , 2009 , 27, 1173-5	44.5	247
297	Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. <i>New England Journal of Medicine</i> , 2018 , 379, 1403-1415	59.2	243
296	The expanding scope of DNA sequencing. <i>Nature Biotechnology</i> , 2012 , 30, 1084-94	44.5	237
295	The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. <i>Nature</i> , 2013 , 500, 207-11	50.4	236
294	A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. <i>Nature Genetics</i> , 2015 , 47, 668-71	36.3	229
293	Saturation editing of genomic regions by multiplex homology-directed repair. <i>Nature</i> , 2014 , 513, 120-3	50.4	223
292	Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. <i>Genome Research</i> , 2013 , 23, 843-54	9.7	221
291	Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. <i>Circulation Research</i> , 2011 , 109, 680-6	15.7	221
290	PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. <i>Brain</i> , 2015 , 138, 1613-28	11.2	211
289	Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 1708	3 ⁷ -9 ⁵ 2	211
288	A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. <i>Cell</i> , 2007 , 129, 1365-76	56.2	209

287	Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. <i>Nature Genetics</i> , 2011 , 43, 1179-85	36.3	206
286	The cis-regulatory dynamics of embryonic development at single-cell resolution. <i>Nature</i> , 2018 , 555, 538	8- 5 42 ₄	199
285	Regional Isolation Drives Bacterial Diversification within Cystic Fibrosis Lungs. <i>Cell Host and Microbe</i> , 2015 , 18, 307-19	23.4	194
284	Haplotype-resolved genome sequencing of a Gujarati Indian individual. <i>Nature Biotechnology</i> , 2011 , 29, 59-63	44.5	194
283	Massively Parallel Functional Analysis of BRCA1 RING Domain Variants. <i>Genetics</i> , 2015 , 200, 413-22	4	190
282	A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens. <i>Cell</i> , 2019 , 176, 377-390.e19	56.2	188
281	Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. <i>Annals of Neurology</i> , 2015 , 77, 720-5	9.4	183
2 80	Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. <i>Nature Communications</i> , 2014 , 5, 4988	17.4	182
279	De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. <i>Nature Genetics</i> , 2012 , 44, 440-4, S1-2	36.3	181
278	A brief history of human disease genetics. <i>Nature</i> , 2020 , 577, 179-189	50.4	181
278	A brief history of human disease genetics. <i>Nature</i> , 2020 , 577, 179-189 GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. <i>Neurology</i> , 2014 , 82, 1245-53	50.4	181
			180
277	GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. <i>Neurology</i> , 2014 , 82, 1245-53 Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. <i>Cell</i> , 2012 ,	6.5	180
² 77	GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. <i>Neurology</i> , 2014 , 82, 1245-53 Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. <i>Cell</i> , 2012 , 150, 831-41	6.5	180
277 276 275	GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. <i>Neurology</i> , 2014 , 82, 1245-53 Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. <i>Cell</i> , 2012 , 150, 831-41 High-resolution comparative analysis of great ape genomes. <i>Science</i> , 2018 , 360, Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/ 6 mice.	6.5 56.2 33.3	180 180 178
²⁷⁷ ²⁷⁶ ²⁷⁵	GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. <i>Neurology</i> , 2014 , 82, 1245-53 Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. <i>Cell</i> , 2012 , 150, 831-41 High-resolution comparative analysis of great ape genomes. <i>Science</i> , 2018 , 360, Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/ 6 mice. <i>Nature Genetics</i> , 1996 , 13, 147-53 Variant Interpretation: Functional Assays to the Rescue. <i>American Journal of Human Genetics</i> , 2017 ,	6.5 56.2 33.3 36.3	180 180 178
277 276 275 274 273	GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. <i>Neurology</i> , 2014 , 82, 1245-53 Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. <i>Cell</i> , 2012 , 150, 831-41 High-resolution comparative analysis of great ape genomes. <i>Science</i> , 2018 , 360, Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. <i>Nature Genetics</i> , 1996 , 13, 147-53 Variant Interpretation: Functional Assays to the Rescue. <i>American Journal of Human Genetics</i> , 2017 , 101, 315-325	6.5 56.2 33.3 36.3	180 180 178 175

(2010-2009)

269	Massively parallel exon capture and library-free resequencing across 16 genomes. <i>Nature Methods</i> , 2009 , 6, 315-6	21.6	164
268	Multiplex assessment of protein variant abundance by massively parallel sequencing. <i>Nature Genetics</i> , 2018 , 50, 874-882	36.3	163
267	Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. <i>Science</i> , 2020 , 369, 582-587	33.3	162
266	Estimating the human mutation rate using autozygosity in a founder population. <i>Nature Genetics</i> , 2012 , 44, 1277-81	36.3	162
265	Bipartite structure of the inactive mouse X chromosome. <i>Genome Biology</i> , 2015 , 16, 152	18.3	161
264	Supervised classification enables rapid annotation of cell atlases. <i>Nature Methods</i> , 2019 , 16, 983-986	21.6	157
263	Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. <i>Nature Genetics</i> , 2013 , 45, 1021-1028	36.3	155
262	Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. <i>American Journal of Human Genetics</i> , 2013 , 93, 398-404	11	153
261	A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. <i>Genome Research</i> , 2017 , 27, 38-52	9.7	148
260	Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. <i>Nature Methods</i> , 2015 , 12, 71-8	21.6	147
259	Massively parallel sequencing and rare disease. Human Molecular Genetics, 2010, 19, R119-24	5.6	147
258	Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. <i>PLoS ONE</i> , 2013 , 8, e65226	3.7	144
257	Fluorescent in situ sequencing on polymerase colonies. <i>Analytical Biochemistry</i> , 2003 , 320, 55-65	3.1	144
256	A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. <i>Nature Genetics</i> , 2013 , 45, 1013-20	36.3	143
255	Escape from X inactivation varies in mouse tissues. <i>PLoS Genetics</i> , 2015 , 11, e1005079	6	142
254	An siRNA-based functional genomics screen for the lidentification of regulators of ciliogenesis and ciliopathy genes. <i>Nature Cell Biology</i> , 2015 , 17, 1074-1087	23.4	140
253	Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2014 , 189, 707-17	10.2	139
252	Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. <i>Nature Methods</i> , 2010 , 7, 250-1	21.6	139

251	Learning the sequence determinants of alternative splicing from millions of random sequences. <i>Cell</i> , 2015 , 163, 698-711	56.2	136
250	Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia. <i>Human Molecular Genetics</i> , 2010 , 19, 4313-8	5.6	136
249	Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. <i>American Journal of Human Genetics</i> , 2012 , 91, 685-93	11	135
248	Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. <i>American Journal of Human Genetics</i> , 2012 , 90, 925-33	11	135
247	Cryptic transmission of SARS-CoV-2 in Washington state. <i>Science</i> , 2020 , 370, 571-575	33.3	135
246	Selection analyses of insertional mutants using subgenic-resolution arrays. <i>Nature Biotechnology</i> , 2001 , 19, 1060-5	44.5	134
245	Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. <i>Nature Genetics</i> , 2014 , 46, 1343-9	36.3	132
244	Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. <i>American Journal of Medical Genetics, Part A</i> , 2011 , 155A, 1511-6	2.5	132
243	Digital genotyping and haplotyping with polymerase colonies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 5926-31	11.5	130
242	A human cell atlas of fetal gene expression. <i>Science</i> , 2020 , 370,	33.3	130
242	A human cell atlas of fetal gene expression. <i>Science</i> , 2020 , 370, megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. <i>Nucleic Acids Research</i> , 2014 , 42, 2591-601		130
	megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. <i>Nucleic Acids</i>	20.1	
241	megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. <i>Nucleic Acids Research</i> , 2014 , 42, 2591-601 Computational discovery of sense-antisense transcription in the human and mouse genomes.	20.1	128
241 240	megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. <i>Nucleic Acids Research</i> , 2014 , 42, 2591-601 Computational discovery of sense-antisense transcription in the human and mouse genomes. <i>Genome Biology</i> , 2002 , 3, RESEARCH0044 Highly scalable generation of DNA methylation profiles in single cells. <i>Nature Biotechnology</i> , 2018 ,	20.1 18.3 44.5	128
241240239	megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. <i>Nucleic Acids Research</i> , 2014 , 42, 2591-601 Computational discovery of sense-antisense transcription in the human and mouse genomes. <i>Genome Biology</i> , 2002 , 3, RESEARCH0044 Highly scalable generation of DNA methylation profiles in single cells. <i>Nature Biotechnology</i> , 2018 , 36, 428-431 A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial	20.1 18.3 44.5	128 127 125
241240239238	megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. <i>Nucleic Acids Research</i> , 2014 , 42, 2591-601 Computational discovery of sense-antisense transcription in the human and mouse genomes. <i>Genome Biology</i> , 2002 , 3, RESEARCH0044 Highly scalable generation of DNA methylation profiles in single cells. <i>Nature Biotechnology</i> , 2018 , 36, 428-431 A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota. <i>PLoS Genetics</i> , 2015 , 11, e1005413 Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis	20.1 18.3 44.5	128 127 125
241240239238237	megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. <i>Nucleic Acids Research</i> , 2014 , 42, 2591-601 Computational discovery of sense-antisense transcription in the human and mouse genomes. <i>Genome Biology</i> , 2002 , 3, RESEARCH0044 Highly scalable generation of DNA methylation profiles in single cells. <i>Nature Biotechnology</i> , 2018 , 36, 428-431 A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota. <i>PLoS Genetics</i> , 2015 , 11, e1005413 Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. <i>American Journal of Human Genetics</i> , 2014 , 94, 734-44 Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of	20.1 18.3 44.5	128 127 125 125

233	Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. <i>G3: Genes, Genomes, Genetics</i> , 2014 , 4, 1339-46	3.2	120
232	Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. <i>Genome Research</i> , 2015 , 25, 119-28	9.7	116
231	Parallel, tag-directed assembly of locally derived short sequence reads. <i>Nature Methods</i> , 2010 , 7, 119-2	221.6	116
230	In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. <i>Genome Research</i> , 2014 , 24, 2041-9	9.7	112
229	The origins, determinants, and consequences of human mutations. <i>Science</i> , 2015 , 349, 1478-83	33.3	111
228	Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. <i>American Journal of Human Genetics</i> , 2013 , 92, 99-106	11	111
227	Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. <i>American Journal of Human Genetics</i> , 2013 , 93, 711-20	11	109
226	Tagmentation-based whole-genome bisulfite sequencing. <i>Nature Protocols</i> , 2013 , 8, 2022-32	18.8	108
225	Activity-enhancing mutations in an E3 ubiquitin ligase identified by high-throughput mutagenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, E1263-72	11.5	108
224	RNF213 rare variants in an ethnically diverse population with Moyamoya disease. Stroke, 2014 , 45, 320	0 <i>-</i> 7.7	103
223	Massively parallel single-amino-acid mutagenesis. <i>Nature Methods</i> , 2015 , 12, 203-6, 4 p following 206	21.6	101
222	Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data. <i>Cell Systems</i> , 2018 , 6, 116-124.e3	10.6	100
221	Towards a comprehensive catalogue of validated and target-linked human enhancers. <i>Nature Reviews Genetics</i> , 2020 , 21, 292-310	30.1	99
220	Informed consent for whole genome sequencing: a qualitative analysis of participant expectations and perceptions of risks, benefits, and harms. <i>American Journal of Medical Genetics, Part A</i> , 2012 , 158A, 1310-9	2.5	99
	1304, 13103		
219	MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing. <i>Bioinformatics</i> , 2014 , 30, 2670-2	7.2	98
219	MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing.	7.2 9.7	98 98
	MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing. <i>Bioinformatics</i> , 2014 , 30, 2670-2 Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. <i>Genome Research</i> , 2012 ,	,	

215	Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. <i>American Journal of Human Genetics</i> , 2013 , 92, 632-6	11	93
214	De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. <i>American Journal of Human Genetics</i> , 2015 , 96, 462	2-73	91
213	Copy-number variation and false positive prenatal aneuploidy screening results. <i>New England Journal of Medicine</i> , 2015 , 372, 1639-45	59.2	90
212	-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. <i>JCI Insight</i> , 2016 , 1,	9.9	90
211	Mutation discovery in mice by whole exome sequencing. <i>Genome Biology</i> , 2011 , 12, R86	18.3	89
210	Next generation sequence analysis for mitochondrial disorders. <i>Genome Medicine</i> , 2009 , 1, 100	14.4	88
209	Single molecule profiling of alternative pre-mRNA splicing. <i>Science</i> , 2003 , 301, 836-8	33.3	88
208	CRISPR/Cas9-Mediated Scanning for Regulatory Elements Required for HPRT1 Expression via Thousands of Large, Programmed Genomic Deletions. <i>American Journal of Human Genetics</i> , 2017 , 101, 192-205	11	87
207	Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project. <i>American Journal of Human Genetics</i> , 2008 , 82, 712-22	11	84
206	De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. <i>American Journal of Human Genetics</i> , 2017 , 101, 768-788	11	81
205	De novo TBR1 mutations in sporadic autism disrupt protein functions. <i>Nature Communications</i> , 2014 , 5, 4954	17.4	80
204	Mutations in CSPP1 cause primary cilia abnormalities and Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. <i>American Journal of Human Genetics</i> , 2014 , 94, 62-72	11	80
203	Long-range polony haplotyping of individual human chromosome molecules. <i>Nature Genetics</i> , 2006 , 38, 382-7	36.3	80
202	A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition. <i>Nature Genetics</i> , 2019 , 51, 1389-1398	36.3	79
201	High-throughput determination of RNA structure by proximity ligation. <i>Nature Biotechnology</i> , 2015 , 33, 980-4	44.5	78
200	Next-generation human genetics. <i>Genome Biology</i> , 2011 , 12,	18.3	78
199	Exome-wide DNA capture and next generation sequencing in domestic and wild species. <i>BMC Genomics</i> , 2011 , 12, 347	4.5	77
198	Genomic Medicine-Progress, Pitfalls, and Promise. <i>Cell</i> , 2019 , 177, 45-57	56.2	75

197	A human cell atlas of fetal chromatin accessibility. <i>Science</i> , 2020 , 370,	33.3	75
196	Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. <i>Nucleic Acids Research</i> , 2019 , 47, 7989-8003	20.1	74
195	Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. <i>Genome Research</i> , 2011 , 21, 1686-94	9.7	74
194	Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. <i>Nature Communications</i> , 2019 , 10, 3583	17.4	71
193	Mechanisms of Interplay between Transcription Factors and the 3D Genome. <i>Molecular Cell</i> , 2019 , 76, 306-319	17.6	70
192	The power of multiplexed functional analysis of genetic variants. <i>Nature Protocols</i> , 2016 , 11, 1782-7	18.8	69
191	Mammalian X upregulation is associated with enhanced transcription initiation, RNA half-life, and MOF-mediated H4K16 acetylation. <i>Developmental Cell</i> , 2013 , 25, 55-68	10.2	69
190	MAT2A mutations predispose individuals to thoracic aortic aneurysms. <i>American Journal of Human Genetics</i> , 2015 , 96, 170-7	11	68
189	Massively multiplex chemical transcriptomics at single-cell resolution. <i>Science</i> , 2020 , 367, 45-51	33.3	67
188	Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86. <i>American Journal of Human Genetics</i> , 2014 , 94, 144-52	11	66
187	Mapping 3D genome architecture through in situ DNase Hi-C. <i>Nature Protocols</i> , 2016 , 11, 2104-21	18.8	66
186	FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. <i>Journal of Clinical Investigation</i> , 2016 , 126, 948-61	15.9	65
185	Early Detection of Covid-19 through a Citywide Pandemic Surveillance Platform. <i>New England Journal of Medicine</i> , 2020 , 383, 185-187	59.2	64
184	Extraordinary molecular evolution in the PRDM9 fertility gene. PLoS ONE, 2009, 4, e8505	3.7	64
183	CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. <i>Genome Medicine</i> , 2021 , 13, 31	14.4	64
182	A Multiplex Homology-Directed DNA Repair Assay Reveals the Impact of More Than 1,000 BRCA1 Missense Substitution Variants on Protein Function. <i>American Journal of Human Genetics</i> , 2018 , 103, 498-508	11	62
181	Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue. <i>Human Genetics</i> , 2016 , 135, 525-540	6.3	61
180	Discovering functional transcription-factor combinations in the human cell cycle. <i>Genome Research</i> , 2005 , 15, 848-55	9.7	60

179	Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study. <i>Lancet Neurology, The</i> , 2015 , 14, 1182-	9 ^{24.1}	58
178	Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee. <i>Genome Research</i> , 2011 , 21, 1640-9	9.7	56
177	Mutations in ECEL1 cause distal arthrogryposis type 5D. <i>American Journal of Human Genetics</i> , 2013 , 92, 150-6	11	55
176	Identification of foreign gene sequences by transcript filtering against the human genome. <i>Nature Genetics</i> , 2002 , 30, 141-2	36.3	54
175	Primate evolution of the recombination regulator PRDM9. <i>Nature Communications</i> , 2014 , 5, 4370	17.4	53
174	Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain. <i>Aging Cell</i> , 2014 , 13, 29-38	9.9	53
173	A major influence of sex-specific loci on alcohol preference in C57Bl/6 and DBA/2 inbred mice. <i>Mammalian Genome</i> , 1998 , 9, 942-8	3.2	53
172	Novel approach to genetic analysis and results in 3000 hemophilia patients enrolled in the My Life, Our Future initiative. <i>Blood Advances</i> , 2017 , 1, 824-834	7.8	52
171	Mutation of ATF6 causes autosomal recessive achromatopsia. <i>Human Genetics</i> , 2015 , 134, 941-50	6.3	51
170	Computational comparison of two draft sequences of the human genome. <i>Nature</i> , 2001 , 409, 856-9	50.4	50
169	Deep sequencing of multiple regions of glial tumors reveals spatial heterogeneity for mutations in clinically relevant genes. <i>Genome Biology</i> , 2014 , 15, 530	18.3	49
168	Rare-variant extensions of the transmission disequilibrium test: application to autism exome sequence data. <i>American Journal of Human Genetics</i> , 2014 , 94, 33-46	11	48
167	Mutations in KCTD1 cause scalp-ear-nipple syndrome. <i>American Journal of Human Genetics</i> , 2013 , 92, 621-6	11	48
166	Accurate gene synthesis with tag-directed retrieval of sequence-verified DNA molecules. <i>Nature Methods</i> , 2012 , 9, 913-5	21.6	48
165	Whole-genome analysis reveals that mutations in inositol polyphosphate phosphatase-like 1 cause opsismodysplasia. <i>American Journal of Human Genetics</i> , 2013 , 92, 137-43	11	46
164	Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures. <i>Molecular Metabolism</i> , 2020 , 32, 109-121	8.8	46
163	High-Throughput Single-Cell Sequencing with Linear Amplification. <i>Molecular Cell</i> , 2019 , 76, 676-690.e1	1 0 17.6	45
162	Detection of minimal residual disease in NPM1-mutated acute myeloid leukemia by next-generation sequencing. <i>Modern Pathology</i> , 2014 , 27, 1438-46	9.8	45

(2020-2018)

New insights into structural features and optimal detection of circulating tumor DNA determined by single-strand DNA analysis. <i>Npj Genomic Medicine</i> , 2018 , 3, 31	6.2	45
KIAA0586 is Mutated in Joubert Syndrome. <i>Human Mutation</i> , 2015 , 36, 831-5	4.7	44
MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect. <i>Genome Biology</i> , 2019 , 20, 223	18.3	42
Condensin-Dependent Chromatin Compaction Represses Transcription Globally during Quiescence. <i>Molecular Cell</i> , 2019 , 73, 533-546.e4	17.6	42
IFRD1 is a candidate gene for SMNA on chromosome 7q22-q23. <i>American Journal of Human Genetics</i> , 2009 , 84, 692-7	11	41
Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural Networks. <i>Cell Reports</i> , 2020 , 31, 107663	10.6	40
FlashFry: a fast and flexible tool for large-scale CRISPR target design. BMC Biology, 2018, 16, 74	7.3	40
The dynamic three-dimensional organization of the diploid yeast genome. <i>ELife</i> , 2017 , 6,	8.9	40
Accurate identification of centromere locations in yeast genomes using Hi-C. <i>Nucleic Acids Research</i> , 2015 , 43, 5331-9	20.1	38
Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders. <i>Genome Research</i> , 2015 , 25, 948-57	9.7	38
An essential cell cycle regulation gene causes hybrid inviability in Drosophila. <i>Science</i> , 2015 , 350, 1552-5	5 33.3	37
Functional testing of thousands of osteoarthritis-associated variants for regulatory activity. <i>Nature Communications</i> , 2019 , 10, 2434	17.4	36
Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3. <i>American Journal of Human Genetics</i> , 2015 , 96, 841-9	11	36
Exome sequencing in suspected monogenic dyslipidemias. <i>Circulation: Cardiovascular Genetics</i> , 2015 , 8, 343-50		36
Adaptive gene amplification as an intermediate step in the expansion of virus host range. <i>PLoS Pathogens</i> , 2014 , 10, e1004002	7.6	36
Adenylate cyclase 1 (ADCY1) mutations cause recessive hearing impairment in humans and defects in hair cell function and hearing in zebrafish. <i>Human Molecular Genetics</i> , 2014 , 23, 3289-98	5.6	36
Accelerating matchmaking of novel dysmorphology syndromes through clinical and genomic characterization of a large cohort. <i>Genetics in Medicine</i> , 2016 , 18, 686-95	8.1	35
Sci-fate characterizes the dynamics of gene expression in single cells. <i>Nature Biotechnology</i> , 2020 , 38, 980-988	44.5	34
	by single-strand DNA analysis. <i>Npj Genomic Medicine</i> , 2018 , 3, 31 KIAAO586 is Mutated in Joubert Syndrome. <i>Human Mutation</i> , 2015 , 36, 831-5 MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect. <i>Genome Biology</i> , 2019 , 20, 223 Condensin-Dependent Chromatin Compaction Represses Transcription Globally during Quiescence. <i>Molecular Cell</i> , 2019 , 73, 533-546.e4 IFRD1 is a candidate gene for SMNA on chromosome 7q22-q23. <i>American Journal of Human Genetics</i> , 2009 , 84, 692-7 Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural Networks. <i>Cell Reports</i> , 2020 , 31, 107663 FlashFry: a fast and flexible tool for large-scale CRISPR target design. <i>BMC Biology</i> , 2018 , 16, 74 The dynamic three-dimensional organization of the diploid yeast genome. <i>ELife</i> , 2017 , 6, Accurate identification of centromere locations in yeast genomes using Hi-C. <i>Nucleic Acids Research</i> , 2015 , 43, 5331-9 Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders. <i>Genome Research</i> , 2015 , 25, 948-57 An essential cell cycle regulation gene causes hybrid inviability in Drosophila. <i>Science</i> , 2015 , 350, 1552-5 Functional testing of thousands of osteoarthritis-associated variants for regulatory activity. <i>Nature Communications</i> , 2019 , 10, 2434 Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3. <i>American Journal of Human Genetics</i> , 2015 , 96, 841-9 Exome sequencing in suspected monogenic dyslipidemias. <i>Circulation: Cardiovascular Genetics</i> , 2015 , 8, 343-50 Adaptive gene amplification as an intermediate step in the expansion of virus host range. <i>PLoS Pathogens</i> , 2014 , 10, e1004002 Adenylate cyclase 1 (ADCY1) mutations cause recessive hearing impairment in humans and defects in hair cell function and hearing in zebrafish. <i>Human Molecular Genetics</i> , 2014 , 23, 3289-98 Accelerating matchmaking of novel dysmorphology syndromes through clinical and genomic charac	by single-strand DNA analysis. Npj Genomic Medicine, 2018, 3, 31 KIAAOS86 is Mutated in Joubert Syndrome. Human Mutation, 2015, 36, 831-5 A7 MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect. Genome Biology, 2019, 20, 223 Condensin-Dependent Chromatin Compaction Represses Transcription Globally during Quiescence. Nolecular Cell, 2019, 73, 533-546.e4 IFRD1 is a candidate gene for SMNA on chromosome 7q22-q23. American Journal of Human Genetics 11 FIRD1 is a candidate gene for SMNA on chromosome 7q22-q23. American Journal of Human Genetics 2, 2009, 84, 692-7 Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural Networks. Cell Reports, 2020, 31, 107663 FlashFry: a fast and flexible tool for large-scale CRISPR target design. BMC Biology, 2018, 16, 74 7.3 The dynamic three-dimensional organization of the diploid yeast genome. ELIfe, 2017, 6, 89 Accurate identification of centromere locations in yeast genomes using Hi-C. Nucleic Acids Research, 2015, 43, 5331-9 Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendellan disorders. 97 An essential cell cycle regulation gene causes hybrid inviability in Drosophila. Science, 2015, 350, 1552-5 333 Functional testing of thousands of osteoarthritis-associated variants for regulatory activity. Nature Communications, 2019, 10, 2434 Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3. American Journal of Human Genetics, 2015, 96, 841-9 Exome sequencing in suspected monogenic dyslipidemias. Circulation: Cardiovascular Genetics, 2015, 8, 343-50 Adaptive gene amplification as an intermediate step in the expansion of virus host range. PLoS Pathogens, 2014, 10, e1004002 Adenylate cyclase 1 (ADCY1) mutations cause recessive hearing impairment in humans and defects in hair cell function and hearing in zebrafish. Human Molecular Genetics, 2014, 23, 3289-98 Accelerating matchmaking of novel dysmorphology syndromes through clinic

143	Understanding Spatial Genome Organization: Methods and Insights. <i>Genomics, Proteomics and Bioinformatics</i> , 2016 , 14, 7-20	6.5	34
142	A non-active-site SET domain surface crucial for the interaction of MLL1 and the RbBP5/Ash2L heterodimer within MLL family core complexes. <i>Journal of Molecular Biology</i> , 2014 , 426, 2283-99	6.5	34
141	BRCA Testing by Single-Molecule Molecular Inversion Probes. <i>Clinical Chemistry</i> , 2017 , 63, 503-512	5.5	33
140	Large-scale targeted sequencing comparison highlights extreme genetic heterogeneity in nephronophthisis-related ciliopathies. <i>Journal of Medical Genetics</i> , 2016 , 53, 208-14	5.8	33
139	A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex. <i>Human Molecular Genetics</i> , 2014 , 23, 1602-5	5.6	33
138	Multiplex pairwise assembly of array-derived DNA oligonucleotides. <i>Nucleic Acids Research</i> , 2016 , 44, e43	20.1	31
137	Germline missense variants in the BTNL2 gene are associated with prostate cancer susceptibility. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2013 , 22, 1520-8	4	31
136	Haplotype phasing of whole human genomes using bead-based barcode partitioning in a single tube. <i>Nature Biotechnology</i> , 2017 , 35, 852-857	44.5	30
135	Rapid and accurate large-scale genotyping of duplicated genes and discovery of interlocus gene conversions. <i>Nature Methods</i> , 2013 , 10, 903-9	21.6	30
134	ALG1-CDG: Clinical and Molecular Characterization of 39 Unreported Patients. <i>Human Mutation</i> , 2016 , 37, 653-60	4.7	30
133	Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells. <i>Methods</i> , 2020 , 170, 61-68	4.6	30
132	Rare A2ML1 variants confer susceptibility to otitis media. <i>Nature Genetics</i> , 2015 , 47, 917-20	36.3	29
131	Challenges and solutions for gene identification in the presence of familial locus heterogeneity. <i>European Journal of Human Genetics</i> , 2015 , 23, 1207-15	5.3	29
130	Embryo-scale, single-cell spatial transcriptomics. <i>Science</i> , 2021 , 373, 111-117	33.3	29
129	A systematic evaluation of the design and context dependencies of massively parallel reporter assays. <i>Nature Methods</i> , 2020 , 17, 1083-1091	21.6	28
128	MIPSTR: a method for multiplex genotyping of germline and somatic STR variation across many individuals. <i>Genome Research</i> , 2015 , 25, 750-61	9.7	27
127	Cilia gene mutations cause atrioventricular septal defects by multiple mechanisms. <i>Human Molecular Genetics</i> , 2016 , 25, 3011-3028	5.6	27
126	Assaying chromosomal inversions by single-molecule haplotyping. <i>Nature Methods</i> , 2006 , 3, 439-45	21.6	27

125	Whole-genome sequencing of individuals from a founder population identifies candidate genes for asthma. <i>PLoS ONE</i> , 2014 , 9, e104396	3.7	26	
124	Systematic dissection of coding exons at single nucleotide resolution supports an additional role in cell-specific transcriptional regulation. <i>PLoS Genetics</i> , 2014 , 10, e1004592	6	26	
123	A genome-wide 3C-method for characterizing the three-dimensional architectures of genomes. <i>Methods</i> , 2012 , 58, 277-88	4.6	26	
122	Noninvasive fetal genome sequencing: a primer. <i>Prenatal Diagnosis</i> , 2013 , 33, 547-54	3.2	26	
121	Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. <i>Yeast</i> , 2018 , 35, 71-84	3.4	25	
120	Successes and challenges of using whole exome sequencing to identify novel genes underlying an inherited predisposition for thoracic aortic aneurysms and acute aortic dissections. <i>Trends in Cardiovascular Medicine</i> , 2014 , 24, 53-60	6.9	25	
119	SwabExpress: An end-to-end protocol for extraction-free COVID-19 testing 2021 ,		25	
118	Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections. <i>PLoS Genetics</i> , 2020 , 16, e1008848	6	24	
117	Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. <i>Journal of Cell Biology</i> , 2019 , 218, 2919-2944	7.3	24	
116	Whole genome prediction for preimplantation genetic diagnosis. <i>Genome Medicine</i> , 2015 , 7, 35	14.4	23	
115	Recommendations for the collection and use of multiplexed functional data for clinical variant interpretation. <i>Genome Medicine</i> , 2019 , 11, 85	14.4	23	
114	Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. <i>Cancer Cell</i> , 2021 , 39, 1150-1162.e9	24.3	23	
113	The Rhododendron Genome and Chromosomal Organization Provide Insight into Shared Whole-Genome Duplications across the Heath Family (Ericaceae). <i>Genome Biology and Evolution</i> , 2019 , 11, 3353-3371	3.9	22	
112	Recurrent somatic loss of TNFRSF14 in classical Hodgkin lymphoma. <i>Genes Chromosomes and Cancer</i> , 2016 , 55, 278-87	5	22	
111	Massively Parallel Genetics. <i>Genetics</i> , 2016 , 203, 617-9	4	21	
110	Whole-genome sequencing for high-resolution investigation of methicillin-resistant Staphylococcus aureus epidemiology and genome plasticity. <i>Journal of Clinical Microbiology</i> , 2014 , 52, 2787-96	9.7	21	
109	Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data. <i>PLoS Computational Biology</i> , 2020 , 16, e1008173	5	20	
108	Integration of multiple epigenomic marks improves prediction of variant impact in saturation mutagenesis reporter assay. <i>Human Mutation</i> , 2019 , 40, 1280-1291	4.7	19	

107	Discovery of T cell antigens by high-throughput screening of synthetic minigene libraries. <i>PLoS ONE</i> , 2012 , 7, e29949	3.7	19
106	Massively parallel dissection of human accelerated regions in human and chimpanzee neural progenitor	·s	18
105	Viral genomes reveal patterns of the SARS-CoV-2 outbreak in Washington State. <i>Science Translational Medicine</i> , 2021 , 13,	17.5	18
104	A homozygous missense variant in type I keratin KRT25 causes autosomal recessive woolly hair. Journal of Medical Genetics, 2015 , 52, 676-80	5.8	17
103	Experimental Evolution Identifies Vaccinia Virus Mutations in A24R and A35R That Antagonize the Protein Kinase R Pathway and Accompany Collapse of an Extragenic Gene Amplification. <i>Journal of Virology</i> , 2015 , 89, 9986-97	6.6	17
102	lentiMPRA and MPRAflow for high-throughput functional characterization of gene regulatory elements. <i>Nature Protocols</i> , 2020 , 15, 2387-2412	18.8	17
101	Activation of a cryptic splice site in the mitochondrial elongation factor GFM1 causes combined OXPHOS deficiency. <i>Mitochondrion</i> , 2017 , 34, 84-90	4.9	16
100	Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution. <i>Methods</i> , 2018 , 142, 59-73	4.6	16
99	Identifying Novel Enhancer Elements with CRISPR-Based Screens. ACS Chemical Biology, 2018, 13, 326-3	312 9	16
98	Functional characterization of enhancer evolution in the primate lineage. <i>Genome Biology</i> , 2018 , 19, 99	18.3	16
97	Encephalopathy caused by novel mutations in the CMP-sialic acid transporter, SLC35A1. <i>American Journal of Medical Genetics, Part A</i> , 2017 , 173, 2906-2911	2.5	16
96	Targeted enrichment of specific regions in the human genome by array hybridization. <i>Current Protocols in Human Genetics</i> , 2010 , Chapter 18, Unit 18.3	3.2	16
95	Sex-restricted non-Mendelian inheritance of mouse chromosome 11 in the offspring of crosses between C57BL/6J and (C57BL/6J x DBA/2J)F1 mice. <i>Mammalian Genome</i> , 1998 , 9, 812-5	3.2	16
94	Trans- and cis-acting effects of Firre on epigenetic features of the inactive X chromosome. <i>Nature Communications</i> , 2020 , 11, 6053	17.4	15
93	Expanding the Molecular and Clinical Phenotype of SSR4-CDG. <i>Human Mutation</i> , 2015 , 36, 1048-51	4.7	15
92	Supervised classification enables rapid annotation of cell atlases		15
91	High Sensitivity Profiling of Chromatin Structure by MNase-SSP. <i>Cell Reports</i> , 2019 , 26, 2465-2476.e4	10.6	15
90	Biome representational in silico karyotyping. <i>Genome Research</i> , 2011 , 21, 626-33	9.7	14

89	Precise genomic deletions using paired prime editing. Nature Biotechnology, 2021,	44.5	14
88	Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability. <i>European Journal of Human Genetics</i> , 2016 , 24, 1223-7	5.3	12
87	Resolving genomic disorder-associated breakpoints within segmental DNA duplications using massively parallel sequencing. <i>Nature Protocols</i> , 2014 , 9, 1496-513	18.8	12
86	Single-molecule sequencing and conformational capture enable de novo mammalian reference genom	ies	12
85	Chromatin accessibility dynamics of myogenesis at single cell resolution		12
84	Accurate functional classification of thousands of BRCA1 variants with saturation genome editing		12
83	DPAGT1 Deficiency with Encephalopathy (DPAGT1-CDG): Clinical and Genetic Description of 11 New Patients. <i>JIMD Reports</i> , 2019 , 44, 85-92	1.9	11
82	The Seattle Flu Study: a multiarm community-based prospective study protocol for assessing influenza prevalence, transmission and genomic epidemiology. <i>BMJ Open</i> , 2020 , 10, e037295	3	11
81	Mutations in the translocon-associated protein complex subunit SSR3 cause a novel congenital disorder of glycosylation. <i>Journal of Inherited Metabolic Disease</i> , 2019 , 42, 993-997	5.4	10
80	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2,		10
80 79	High-content CRISPR screening. <i>Nature Reviews Methods Primers</i> , 2022 , 2, Genome sequencing in a case of Niemann-Pick type C. <i>Journal of Physical Education and Sports Management</i> , 2016 , 2, a001222	2.8	10
	Genome sequencing in a case of Niemann-Pick type C. <i>Journal of Physical Education and Sports</i>		9
79	Genome sequencing in a case of Niemann-Pick type C. <i>Journal of Physical Education and Sports Management</i> , 2016 , 2, a001222 Quantification of differential gene expression by multiplexed targeted resequencing of cDNA.		9
79 78	Genome sequencing in a case of Niemann-Pick type C. <i>Journal of Physical Education and Sports Management</i> , 2016 , 2, a001222 Quantification of differential gene expression by multiplexed targeted resequencing of cDNA. <i>Nature Communications</i> , 2017 , 8, 15190 A combination of transcription factors mediates inducible interchromosomal contacts. <i>ELife</i> , 2019 ,	17.4	9
79 78 77	Genome sequencing in a case of Niemann-Pick type C. <i>Journal of Physical Education and Sports Management</i> , 2016 , 2, a001222 Quantification of differential gene expression by multiplexed targeted resequencing of cDNA. <i>Nature Communications</i> , 2017 , 8, 15190 A combination of transcription factors mediates inducible interchromosomal contacts. <i>ELife</i> , 2019 , 8, Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).	17.4 8.9	9 8 8
79 78 77 76	Genome sequencing in a case of Niemann-Pick type C. <i>Journal of Physical Education and Sports Management</i> , 2016 , 2, a001222 Quantification of differential gene expression by multiplexed targeted resequencing of cDNA. <i>Nature Communications</i> , 2017 , 8, 15190 A combination of transcription factors mediates inducible interchromosomal contacts. <i>ELife</i> , 2019 , 8, Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs). <i>Methods in Molecular Biology</i> , 2017 , 1492, 95-106	17.4 8.9	9 8 8
79 78 77 76 75	Genome sequencing in a case of Niemann-Pick type C. <i>Journal of Physical Education and Sports Management</i> , 2016 , 2, a001222 Quantification of differential gene expression by multiplexed targeted resequencing of cDNA. <i>Nature Communications</i> , 2017 , 8, 15190 A combination of transcription factors mediates inducible interchromosomal contacts. <i>ELife</i> , 2019 , 8, Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs). <i>Methods in Molecular Biology</i> , 2017 , 1492, 95-106 Comprehensive single cell transcriptional profiling of a multicellular organism by combinatorial indexi	17.4 8.9	9 8 8 8

71	Capturing native long-range contiguity by in situ library construction and optical sequencing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 18749-54	11.5	7
70	Polony DNA sequencing. Current Protocols in Molecular Biology, 2006, Chapter 7, Unit 7.8	2.9	7
69	Viral genomes reveal patterns of the SARS-CoV-2 outbreak in Washington State 2020 ,		7
68	Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT		7
67	Trans- and cis-acting effects of the lncRNA Firre on epigenetic and structural features of the inactive X chromosome		7
66	Tagmentation-Based Library Preparation for Low DNA Input Whole Genome Bisulfite Sequencing. <i>Methods in Molecular Biology</i> , 2018 , 1708, 105-122	1.4	7
65	Life after genetics. <i>Genome Medicine</i> , 2014 , 6, 86	14.4	6
64	Sequencing thoroughbreds. <i>Nature Biotechnology</i> , 2006 , 24, 139	44.5	6
63	Genome sequencing of idiopathic pulmonary fibrosis in conjunction with a medical school human anatomy course. <i>PLoS ONE</i> , 2014 , 9, e106744	3.7	6
62	Adaptations in Hippo-Yap signaling and myofibroblast fate underlie scar-free ear appendage wound healing in spiny mice. <i>Developmental Cell</i> , 2021 , 56, 2722-2740.e6	10.2	6
61	Dynamic reorganization of nuclear architecture during human cardiogenesis		6
60	Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair		6
59	LB21. The Seattle Flu Study: A Community-Based Study of Influenza. <i>Open Forum Infectious Diseases</i> , 2019 , 6, S1002-S1002	1	6
58	Suppressor mutations in -null mice implicate the DNA damage response in Rett syndrome pathology. <i>Genome Research</i> , 2020 , 30, 540-552	9.7	6
57	Running spell-check to identify regulatory variants. <i>Nature Genetics</i> , 2015 , 47, 853-5	36.3	5
56	WhatS a Genome Worth?. Science Translational Medicine, 2012, 4, 133fs13	17.5	5
55	Unsupervised manifold alignment for single-cell multi-omics data 2020 , 2020, 1-10		5
54	Massively multiplex single-cell Hi-C		5

53	Scalable and efficient single-cell DNA methylation sequencing by combinatorial indexing		5
52	Multiplex Assessment of Protein Variant Abundance by Massively Parallel Sequencing		5
51	Characterizing the temporal dynamics of gene expression in single cells with sci-fate		5
50	Precise genomic deletions using paired prime editing		5
49	Multimodal single-cell analysis reveals distinct radioresistant stem-like and progenitor cell populations in murine glioma. <i>Glia</i> , 2020 , 68, 2486-2502	9	4
48	Novel mutations in the genes TGM1 and ALOXE3 underlying autosomal recessive congenital ichthyosis. <i>International Journal of Dermatology</i> , 2016 , 55, 524-30	1.7	4
47	Mitral regurgitation as a phenotypic manifestation of nonphotosensitive trichothiodystrophy due to a splice variant in MPLKIP. <i>BMC Medical Genetics</i> , 2016 , 17, 13	2.1	4
46	Complex Minigene Library Vaccination for Discovery of Pre-Erythrocytic Plasmodium T Cell Antigens. <i>PLoS ONE</i> , 2016 , 11, e0153449	3.7	4
45	On the design of CRISPR-based single cell molecular screens		4
44	Whole organism lineage tracing by combinatorial and cumulative genome editing		4
44	Whole organism lineage tracing by combinatorial and cumulative genome editing Unsupervised manifold alignment for single-cell multi-omics data		4
43	Unsupervised manifold alignment for single-cell multi-omics data High-throughput mapping of meiotic crossover and chromosome mis-segregation events in		4
43	Unsupervised manifold alignment for single-cell multi-omics data High-throughput mapping of meiotic crossover and chromosome mis-segregation events in interspecific hybrid mice Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated	17.4	4 4
43 42 41	Unsupervised manifold alignment for single-cell multi-omics data High-throughput mapping of meiotic crossover and chromosome mis-segregation events in interspecific hybrid mice Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C The landscape of alternative polyadenylation in single cells of the developing mouse embryo.	17.4	4 4
43 42 41 40	Unsupervised manifold alignment for single-cell multi-omics data High-throughput mapping of meiotic crossover and chromosome mis-segregation events in interspecific hybrid mice Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C The landscape of alternative polyadenylation in single cells of the developing mouse embryo. Nature Communications, 2021, 12, 5101 Benchmarked approaches for reconstruction of in vitro cell lineages and in silico models of C.		4 4 4
43 42 41 40 39	Unsupervised manifold alignment for single-cell multi-omics data High-throughput mapping of meiotic crossover and chromosome mis-segregation events in interspecific hybrid mice Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C The landscape of alternative polyadenylation in single cells of the developing mouse embryo. Nature Communications, 2021, 12, 5101 Benchmarked approaches for reconstruction of intivitro cell lineages and in silico models of C. elegans and M. musculus developmental trees. Cell Systems, 2021, 12, 810-826.e4 A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues	10.6	4 4 4

35	Predicting mRNA abundance directly from genomic sequence using deep convolutional neural network	5	3
34	Incidence of Medically Attended Acute Respiratory Illnesses Due to Respiratory Viruses Across the Life Course During the 2018/19 Influenza Season. <i>Clinical Infectious Diseases</i> , 2021 , 73, 802-807	11.6	3
33	Systematic reconstruction of cellular trajectories across mouse embryogenesis <i>Nature Genetics</i> , 2022 , 54, 328-341	36.3	3
32	The State of Whole-Genome Sequencing 2017 , 45-62		2
31	Rare variant associations with waist-to-hip ratio in European-American and African-American women from the NHLBI-Exome Sequencing Project. <i>European Journal of Human Genetics</i> , 2016 , 24, 1181	573	2
30	Identification of novel HLA class II target epitopes for generation of donor-specific T regulatory cells. <i>Clinical Immunology</i> , 2012 , 145, 153-60	9	2
29	A temporally resolved, multiplex molecular recorder based on sequential genome editing		2
28	Multiplex genomic recording of enhancer and signal transduction activity in mammalian cells		2
27	Saturation mutagenesis of disease-associated regulatory elements		2
26	An open-source platform to distribute and interpret data from multiplexed assays of variant effect		2
25	Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution		2
24	FlashFry: a fast and flexible tool for large-scale CRISPR target design		2
23	The Seattle Flu Study: a multi-arm community-based prospective study protocol for assessing influenza prevalence, transmission, and genomic epidemiology		2
22	Single-cell lineage and transcriptome reconstruction of metastatic cancer reveals selection of aggressive hybrid EMT states		2
21	Functional Characterization of Enhancer Evolution in the Primate Lineage		2
20	A multiplexed homology-directed DNA repair assay reveals the impact of \sim 1,700 BRCA1 variants on protein function		2
19	Capturing cell type-specific chromatin structural patterns by applying topic modeling to single-cell Hi-C data		2
18	Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy		2

LIST OF PUBLICATIONS

17	Comprehensive characterization of tissue-specific chromatin accessibility in L2 nematodes. <i>Genome Research</i> , 2021 , 31, 1952-1969	9.7	2
16	Comparable Specimen Collection from Both Ends of At-Home Midturbinate Swabs. <i>Journal of Clinical Microbiology</i> , 2021 , 59,	9.7	2
15	Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and X inactivation. <i>Genome Biology</i> , 2021 , 22, 279	18.3	2
14	Expanding the single-cell genomics toolkit. <i>Nature Genetics</i> , 2019 , 51, 931-932	36.3	1
13	2012 Curt Stern Award address. American Journal of Human Genetics, 2013, 92, 340-4	11	1
12	Genetic variation meets replication origins. <i>Cell</i> , 2014 , 159, 973-974	56.2	1
11	Novel Approach to and Results of Genetic Analysis of 3000 Hemophilia Patients Enrolled in the MyLifeOurFuture Initiative. <i>Blood</i> , 2016 , 128, 205-205	2.2	1
10	TransMPRA: A framework for assaying the role of many trans-acting factors at many enhancers		1
9	Functional Testing of Thousands of Osteoarthritis-Associated Variants for Regulatory Activity		1
8	The 4D Nucleome Project		1
7	A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity		1
6	Paired CRISPR/Cas9 guide-RNAs enable high-throughput deletion scanning (ScanDel) of a Mendelian disease locus for functionally critical non-coding elements		1
5	The landscape of alternative polyadenylation in single cells of the developing mouse embryo		1
4	The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. <i>PLoS Biology</i> , 2021 , 19, e3001085	9.7	Ο
3	Genome-wide strand asymmetry in massively parallel reporter activity favors genic strands. <i>Genome Research</i> , 2021 , 31, 866-876	9.7	0
2	The Seattle Flu Study: when regulations hinder pandemic surveillance <i>Nature Medicine</i> , 2021 ,	50.5	0
1	Before the Flood. <i>Clinical Infectious Diseases</i> , 2020 , 71, 2513-2515	11.6	