
## Takeshi Abe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3121154/publications.pdf Version: 2024-02-01



TAKESHI ARE

| #  | Article                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte. Journal of the Electrochemical Society, 2004, 151, A1120.                                                                                                                                                                                | 1.3 | 482       |
| 2  | A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chemical Communications, 2013, 49, 11194.                                                                                                                                                                                              | 2.2 | 340       |
| 3  | Alkaline direct alcohol fuel cells using an anion exchange membrane. Journal of Power Sources, 2005, 150, 27-31.                                                                                                                                                                                                 | 4.0 | 339       |
| 4  | Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate. Journal of the Electrochemical Society, 2002, 149, A1578.                                                                                                                                                                        | 1.3 | 329       |
| 5  | Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of<br>Solvent and Surface Film. Langmuir, 2009, 25, 12766-12770.                                                                                                                                             | 1.6 | 310       |
| 6  | In Situ Raman Study on Electrochemical Li Intercalation into Graphite. Journal of the Electrochemical<br>Society, 1995, 142, 20-26.                                                                                                                                                                              | 1.3 | 302       |
| 7  | Durability of perfluorinated ionomer membrane against hydrogen peroxide. Journal of Power<br>Sources, 2006, 158, 1222-1228.                                                                                                                                                                                      | 4.0 | 302       |
| 8  | High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements.<br>Scientific Reports, 2014, 4, 5622.                                                                                                                                                                            | 1.6 | 286       |
| 9  | Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries:Â Atomic Force<br>Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions.<br>Langmuir, 2001, 17, 8281-8286.                                                                                 | 1.6 | 268       |
| 10 | Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to<br>carbon-coated sphereElectronic supplementary information (ESI) available: colour versions of Figs. 6,<br>8 and 9. See http://www.rsc.org/suppdata/jm/b3/b316702j/. Journal of Materials Chemistry, 2004, 14, 1754. | 6.7 | 241       |
| 11 | High-Level Doping of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their<br>Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.                                                                                                                                    | 3.2 | 237       |
| 12 | Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid<br>Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries. Journal of the<br>Electrochemical Society, 2005, 152, A2151.                                                                 | 1.3 | 219       |
| 13 | Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon, 2006, 44, 203-210.                                                                                                                                                        | 5.4 | 219       |
| 14 | Hierarchically Porous Carbon Monoliths Comprising Ordered Mesoporous Nanorod Assemblies for<br>High-Voltage Aqueous Supercapacitors. Chemistry of Materials, 2016, 28, 3944-3950.                                                                                                                                | 3.2 | 203       |
| 15 | Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an<br>Ethylene Carbonate-Based Solution. Journal of the Electrochemical Society, 2001, 148, A989.                                                                                                                   | 1.3 | 192       |
| 16 | Suppression of dendritic lithium formation by using concentrated electrolyte solutions.<br>Electrochemistry Communications, 2008, 10, 635-638.                                                                                                                                                                   | 2.3 | 181       |
| 17 | A comparative study on the impact of different glymes and their derivatives as electrolyte solvents<br>for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. Physical Chemistry<br>Chemical Physics, 2016, 18, 14299-14316.                                                          | 1.3 | 172       |
| 18 | Electrochemical Scanning Tunneling Microscopy Observation of Highly Oriented Pyrolytic Graphite<br>Surface Reactions in an Ethylene Carbonate-Based Electrolyte Solution. Langmuir, 1996, 12, 1535-1540.                                                                                                         | 1.6 | 165       |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Electrochemical Intercalation of Lithium Ion within Graphite from Propylene Carbonate Solutions.<br>Electrochemical and Solid-State Letters, 2003, 6, A13.                                                                                                    | 2.2  | 164       |
| 20 | Preparation of c-axis oriented thin films of LiCoO2 by pulsed laser deposition and their electrochemical properties. Journal of Power Sources, 2001, 94, 175-182.                                                                                             | 4.0  | 154       |
| 21 | Electrochemical Lithium Intercalation into Graphite in Dimethyl Sulfoxide-Based Electrolytes: Effect<br>of Solvation Structure of Lithium Ion. Journal of Physical Chemistry C, 2010, 114, 11680-11685.                                                       | 1.5  | 152       |
| 22 | Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes. Journal of Power Sources, 2005, 146, 749-752.                                                                                                | 4.0  | 136       |
| 23 | Graphitized Carbon Nanobeads with an Onion Texture as a Lithium-Ion Battery Negative Electrode for<br>High-Rate Use. Advanced Materials, 2005, 17, 2857-2860.                                                                                                 | 11.1 | 136       |
| 24 | Stage Transformation of Lithiumâ€Graphite Intercalation Compounds Caused by Electrochemical Lithium Intercalation. Journal of the Electrochemical Society, 1999, 146, 2443-2448.                                                                              | 1.3  | 135       |
| 25 | Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions. Electrochimica Acta, 2002, 47, 1975-1982.                                                    | 2.6  | 135       |
| 26 | Lithium-ion transfer at LiMn2O4 thin film electrode prepared by pulsed laser deposition.<br>Electrochemistry Communications, 2003, 5, 502-505.                                                                                                                | 2.3  | 135       |
| 27 | Interfacial reactions between graphite electrodes and propylene carbonate-based solutions:<br>Electrolyte-concentration dependence of electrochemical lithium intercalation reaction. Journal of<br>Power Sources, 2008, 175, 540-546.                        | 4.0  | 126       |
| 28 | Kinetics of Electrochemical Insertion and Extraction of Lithium Ion at SiO. Journal of the Electrochemical Society, 2010, 157, A26.                                                                                                                           | 1.3  | 125       |
| 29 | Lithium Ion Transfer at the Interface between Lithium-Ion-Conductive Solid Crystalline Electrolyte and Polymer Electrolyte. Journal of the Electrochemical Society, 2004, 151, A1950.                                                                         | 1.3  | 124       |
| 30 | Hierarchically Porous Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> Anode Materials for Li―and Naâ€ŀon<br>Batteries: Effects of Nanoarchitectural Design and Temperature Dependence of the Rate Capability.<br>Advanced Energy Materials, 2015, 5, 1400730. | 10.2 | 124       |
| 31 | Electro-oxidation of methanol and ethylene glycol on platinum in alkaline solution: Poisoning effects and product analysis. Electrochimica Acta, 2005, 51, 1085-1090.                                                                                         | 2.6  | 122       |
| 32 | Hard Carbon Anodes for Naâ€lon Batteries: Toward a Practical Use. ChemElectroChem, 2015, 2, 1917-1920.                                                                                                                                                        | 1.7  | 112       |
| 33 | STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution. Electrochimica Acta, 1999, 45, 99-105.                                                                  | 2.6  | 111       |
| 34 | Influence of Manganese Dissolution on the Degradation of Surface Films on Edge Plane Graphite<br>Negative-Electrodes in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159,<br>A961-A966.                                               | 1.3  | 109       |
| 35 | Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface. Solid State Ionics, 2005, 176, 2371-2376.                                                                                           | 1.3  | 108       |
| 36 | Characterization of electrode/electrolyte interface for lithium batteries using in situ synchrotron<br>X-ray reflectometry—A new experimental technique for LiCoO2 model electrode. Journal of Power<br>Sources, 2007, 168, 493-500.                          | 4.0  | 102       |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Kinetics of Lithium-Ion Transfer at the Interface between<br>Li <sub>0.35</sub> La <sub>0.55</sub> TiO <sub>3</sub> and Binary Electrolytes. Journal of Physical<br>Chemistry C, 2009, 113, 14528-14532.                                           | 1.5 | 95        |
| 38 | Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode. Journal of Power Sources, 2004, 137, 111-116.                                                                                         | 4.0 | 94        |
| 39 | Formation mechanism of alkyl dicarbonates in Li-ion cells. Journal of Power Sources, 2005, 150, 208-215.                                                                                                                                           | 4.0 | 94        |
| 40 | Characterization of Carbon-Coated Natural Graphite as a Lithium-Ion Battery Anode Material. Journal of the Electrochemical Society, 2002, 149, A499.                                                                                               | 1.3 | 90        |
| 41 | Correlation between Chargeâ^'Discharge Behavior of Graphite and Solvation Structure of the Lithium<br>Ion in Propylene Carbonate-Containing Electrolytes. Journal of Physical Chemistry C, 2009, 113,<br>8948-8953.                                | 1.5 | 89        |
| 42 | Suppression of an Alkyl Dicarbonate Formation in Li-Ion Cells. Journal of the Electrochemical Society, 2005, 152, A2046.                                                                                                                           | 1.3 | 85        |
| 43 | In Situ AFM Study of Surface Film Formation on the Edge Plane of HOPG for Lithium-Ion Batteries.<br>Journal of Physical Chemistry C, 2011, 115, 25484-25489.                                                                                       | 1.5 | 84        |
| 44 | Facile Preparation of Monolithic LiFePO <sub>4</sub> /Carbon Composites with Well-Defined Macropores for a Lithium-Ion Battery. Chemistry of Materials, 2011, 23, 5208-5216.                                                                       | 3.2 | 82        |
| 45 | Origin of the Electrochemical Stability of Aqueous Concentrated Electrolyte Solutions. Journal of the Electrochemical Society, 2018, 165, A3299-A3303.                                                                                             | 1.3 | 81        |
| 46 | Interfacial lithium-ion transfer at the LiMn2O4 thin film electrode/aqueous solution interface.<br>Journal of Power Sources, 2007, 174, 695-700.                                                                                                   | 4.0 | 78        |
| 47 | Electrochemical Insertion and Extraction of Lithium Ion at Uniform Nanosized Li4/3Ti5/3O4 Particles<br>Prepared by a Spray Pyrolysis Method. Chemistry of Materials, 2005, 17, 1580-1582.                                                          | 3.2 | 77        |
| 48 | Charge–Discharge Behavior of Bismuth in a Liquid Electrolyte for Rechargeable Batteries Based on a<br>Fluoride Shuttle. ACS Energy Letters, 2017, 2, 1460-1464.                                                                                    | 8.8 | 77        |
| 49 | Li <sup>+</sup> -lon Transfer through the Interface between Li <sup>+</sup> -lon Conductive Ceramic<br>Electrolyte and Li <sup>+</sup> -lon-Concentrated Propylene Carbonate Solution. Journal of Physical<br>Chemistry C, 2009, 113, 20135-20138. | 1.5 | 75        |
| 50 | Correlation Between Cointercalation of Solvents and Electrochemical Intercalation of Lithium into<br>Graphite in Propylene Carbonate Solution. Journal of the Electrochemical Society, 2003, 150, A257.                                            | 1.3 | 74        |
| 51 | Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution. Journal of Power Sources, 2008, 185, 740-746.                                                                                  | 4.0 | 73        |
| 52 | Preliminary Study on Direct Alcohol Fuel Cells Employing Anion Exchange Membrane.<br>Electrochemistry, 2002, 70, 980-983.                                                                                                                          | 0.6 | 72        |
| 53 | Surface and interface sciences of Li-ion batteries. Progress in Surface Science, 2017, 92, 240-280.                                                                                                                                                | 3.8 | 71        |
| 54 | AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries.<br>Journal of Power Sources, 2003, 119-121, 555-560.                                                                                               | 4.0 | 70        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mechanism for Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite in Sulfuric Acid<br>Solution. Journal of the Electrochemical Society, 2007, 154, B1017.                            | 1.3 | 70        |
| 56 | Influence of the carbon surface on cathode deposits in non-aqueous Li–O2 batteries. Carbon, 2012, 50,<br>4794-4803.                                                                              | 5.4 | 68        |
| 57 | Temperature Effects on the Electrochemical Behavior of Spinel LiMn2O4in Quaternary<br>Ammonium-Based Ionic Liquid Electrolyte. Journal of Physical Chemistry B, 2005, 109, 13676-13684.          | 1.2 | 67        |
| 58 | Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. Journal of Power Sources, 2016, 318, 41-48.                                                  | 4.0 | 67        |
| 59 | Lithium-ion transfer on a LixCoO2 thin film electrode prepared by pulsed laser deposition—Effect of orientation Journal of Power Sources, 2007, 172, 933-937.                                    | 4.0 | 66        |
| 60 | Lithium-ion transfer at interface between carbonaceous thin film electrode/electrolyte. Journal of Power Sources, 2004, 127, 72-75.                                                              | 4.0 | 65        |
| 61 | Towards zinc-oxygen batteries with enhanced cycling stability: The benefit of anion-exchange ionomer for zinc sponge anodes. Journal of Power Sources, 2018, 395, 195-204.                       | 4.0 | 65        |
| 62 | A new kind of all-solid-state thin-film-type lithium-ion battery developed by applying a D.C. high voltage. Electrochemistry Communications, 2006, 8, 1287-1291.                                 | 2.3 | 64        |
| 63 | Compatibility of quaternary ammonium-based ionic liquid electrolytes with electrodes in lithium ion batteries. Electrochimica Acta, 2006, 52, 1556-1562.                                         | 2.6 | 64        |
| 64 | Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures. Journal of Power Sources, 2008, 180, 539-545.                                                        | 4.0 | 63        |
| 65 | Transmission electron microscopy (TEM) analysis of two-phase reaction in electrochemical lithium insertion within α-MoO3. Solid State Ionics, 2000, 135, 95-100.                                 | 1.3 | 61        |
| 66 | Perovskite-type oxides La1â^'xSrxMnO3 for cathode catalysts in direct ethylene glycol alkaline fuel<br>cells. Journal of Power Sources, 2008, 178, 683-686.                                      | 4.0 | 60        |
| 67 | New Magnesium-ion Conductive Electrolyte Solution Based on Triglyme for Reversible Magnesium<br>Metal Deposition and Dissolution at Ambient Temperature. Chemistry Letters, 2014, 43, 1788-1790. | 0.7 | 60        |
| 68 | Electrochemical oxidation of ethylene glycol on Pt-based catalysts in alkaline solutions and quantitative analysis of intermediate products. Electrochimica Acta, 2011, 56, 7610-7614.           | 2.6 | 59        |
| 69 | Electrochemical Performance of a Bismuth Fluoride Electrode in a Reserve-Type Fluoride Shuttle<br>Battery. Journal of the Electrochemical Society, 2017, 164, A3702-A3708.                       | 1.3 | 59        |
| 70 | A novel all-solid-state thin-film-type lithium-ion battery with in situ prepared positive and negative electrode materials. Electrochemistry Communications, 2009, 11, 413-416.                  | 2.3 | 58        |
| 71 | Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition. Journal of Power Sources, 2005, 146, 559-564.                                                              | 4.0 | 57        |
| 72 | Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing<br>trialkyl phosphoric ester. Journal of Power Sources, 2012, 212, 148-153.                    | 4.0 | 57        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | TEM and electron tomography studies of carbon nanospheres for lithium secondary batteries.<br>Carbon, 2006, 44, 2558-2564.                                                                                                      | 5.4 | 56        |
| 74 | Kinetics of Interfacial Ion Transfer in Lithium-Ion Batteries: Mechanism Understanding and<br>Improvement Strategies. ACS Applied Materials & Interfaces, 2022, 14, 22706-22718.                                                | 4.0 | 56        |
| 75 | Impact of Electrolyte on Pseudocapacitance and Stability of Porous Titanium Nitride (TiN) Monolithic<br>Electrode. Journal of the Electrochemical Society, 2015, 162, A77-A85.                                                  | 1.3 | 55        |
| 76 | Electrochemical STM observation of LiMn2O4 thin films prepared by pulsed laser deposition. Journal of Power Sources, 1999, 81-82, 554-557.                                                                                      | 4.0 | 54        |
| 77 | Stability of Pt-Catalyzed Highly Oriented Pyrolytic Graphite Against Hydrogen Peroxide in Acid<br>Solution. Journal of the Electrochemical Society, 2006, 153, A58.                                                             | 1.3 | 54        |
| 78 | Effect of Graphite Orientation and Lithium Salt on Electronic Passivation of Highly Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 2012, 159, A634-A641.                                                  | 1.3 | 54        |
| 79 | Catalytic Roles of Perovskite Oxides in Electrochemical Oxygen Reactions in Alkaline Media. Journal of the Electrochemical Society, 2014, 161, F694-F697.                                                                       | 1.3 | 54        |
| 80 | Suppression of Dendrite Formation of Zinc Electrodes by the Modification of Anion-Exchange Ionomer. Electrochemistry, 2012, 80, 725-727.                                                                                        | 0.6 | 53        |
| 81 | Hierarchically Porous Monoliths Based on N-Doped Reduced Titanium Oxides and Their Electric and Electrochemical Properties. Chemistry of Materials, 2013, 25, 3504-3512.                                                        | 3.2 | 52        |
| 82 | Creation of nanospaces by intercalation of alkali metals into graphite in organic solutions. Synthetic<br>Metals, 2001, 125, 153-159.                                                                                           | 2.1 | 49        |
| 83 | Reduction of charge transfer resistance at the lithium phosphorus oxynitride/lithium cobalt oxide interface by thermal treatment. Journal of Power Sources, 2005, 146, 745-748.                                                 | 4.0 | 49        |
| 84 | Spectroscopic Characterization of Surface Films Formed on Edge Plane Graphite in Ethylene<br>Carbonate-Based Electrolytes Containing Film-Forming Additives. Journal of the Electrochemical<br>Society, 2012, 159, A1786-A1790. | 1.3 | 49        |
| 85 | Preparation of anion-exchange membrane by plasma polymerization and its use in alkaline fuel cells.<br>Thin Solid Films, 2008, 516, 3309-3313.                                                                                  | 0.8 | 48        |
| 86 | Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities. Journal of Materials Chemistry, 2011, 21, 1913-1917.                               | 6.7 | 48        |
| 87 | Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode. Journal of Materials Chemistry, 2012, 22, 14691.                                                              | 6.7 | 48        |
| 88 | Proton-Conductive Electrolyte Consisting of NH[sub 4]PO[sub 3]/TiP[sub 2]O[sub 7] for<br>Intermediate-Temperature Fuel Cells. Journal of the Electrochemical Society, 2005, 152, A167.                                          | 1.3 | 46        |
| 89 | Preparation of LiFePO[sub 4] Thin Films by Pulsed Laser Deposition and Their Electrochemical Properties. Electrochemical and Solid-State Letters, 2004, 7, A340.                                                                | 2.2 | 45        |
| 90 | New Insights into the Relationship between Micropore Properties, Ionic Sizes, and Electric<br>Double-Layer Capacitance in Monolithic Carbon Electrodes. Journal of Physical Chemistry C, 2012, 116,<br>26197-26203.             | 1.5 | 45        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode. Journal of Power Sources, 2001, 97-98, 156-158.                                                       | 4.0 | 44        |
| 92  | Pulse Voltammetric and ac Impedance Spectroscopic Studies on Lithium Ion Transfer at an Electrolyte/Li4/3Ti5/3O4 Electrode Interface. Analytical Chemistry, 2005, 77, 1696-1700.                                         | 3.2 | 44        |
| 93  | In Situ Atomic Force Microscopy Study on Lithium Deposition on Nickel Substrates at Elevated Temperatures. Journal of the Electrochemical Society, 2002, 149, A385.                                                      | 1.3 | 43        |
| 94  | Lithium-ion transfer at an electrolyte/non-graphitizable carbon electrode interface. Carbon, 2004, 42, 3183-3187.                                                                                                        | 5.4 | 43        |
| 95  | Temperature dependence of the electrochemical behavior of LiCoO in quaternary ammonium-based ionic liquid electrolyte. Solid State Ionics, 2005, 176, 2219-2226.                                                         | 1.3 | 43        |
| 96  | Sodium-ion transfer at the interface between ceramic and organic electrolytes. Journal of Power Sources, 2010, 195, 7466-7470.                                                                                           | 4.0 | 43        |
| 97  | Electrochemical AFM Observation of the HOPG Edge Plane in Ethylene Carbonate-Based Electrolytes<br>Containing Film-Forming Additives. Journal of the Electrochemical Society, 2012, 159, A1292-A1297.                    | 1.3 | 42        |
| 98  | Electrochemical intercalation of bis(fluorosulfonyl)amide anions into graphite from aqueous solutions. Electrochemistry Communications, 2019, 100, 26-29.                                                                | 2.3 | 42        |
| 99  | Preparation of alkali metal graphite intercalation compounds in organic solvents. Journal of Physics and Chemistry of Solids, 1996, 57, 799-803.                                                                         | 1.9 | 40        |
| 100 | Charge-Transfer Reaction at the Lithium Phosphorus Oxynitride Glass Electrolyte/Lithium Manganese<br>Oxide Thin-Film Interface and Its Stability on Cycling. Journal of the Electrochemical Society, 2006, 153,<br>A821. | 1.3 | 40        |
| 101 | Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy. Journal of Power Sources, 2003, 119-121, 597-603.                                            | 4.0 | 39        |
| 102 | Use of layered double hydroxides to improve the triple phase boundary in anion-exchange membrane<br>fuel cells. Journal of Power Sources, 2010, 195, 6500-6503.                                                          | 4.0 | 39        |
| 103 | Role of Edge Orientation in Kinetics of Electrochemical Intercalation of Lithium-Ion at Graphite.<br>Langmuir, 2010, 26, 14990-14994.                                                                                    | 1.6 | 38        |
| 104 | Effects of Electrolyte Additives on the Suppression of Mn Deposition on Edge Plane Graphite for<br>Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A410-A413.                                  | 1.3 | 36        |
| 105 | Electrochemical Intercalation of Bis(fluorosulfonyl)amide Anion into Graphite. Journal of the<br>Electrochemical Society, 2016, 163, A499-A503.                                                                          | 1.3 | 36        |
| 106 | Novel Anode Catalyst Containing Gold Nanoparticles for Use in Direct Methanol Fuel Cells. Journal of Physical Chemistry C, 2007, 111, 3171-3174.                                                                         | 1.5 | 35        |
| 107 | Effects of LiBOB on salt solubility and BiF <sub>3</sub> electrode electrochemical properties in fluoride shuttle batteries. Journal of Materials Chemistry A, 2019, 7, 8559-8567.                                       | 5.2 | 35        |
| 108 | Electrocatalytic Oxidation of Ethylene Glycol in Alkaline Solution. Journal of the Electrochemical<br>Society, 2005, 152, A729.                                                                                          | 1.3 | 34        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Improvement of cycling performance in bismuth fluoride electrodes by controlling electrolyte composition in fluoride shuttle batteries. Journal of Applied Electrochemistry, 2018, 48, 1205-1211.                                   | 1.5 | 34        |
| 110 | Influence of Electrolyte Composition on the Electrochemical Reaction Mechanism of Bismuth<br>Fluoride Electrode in Fluoride Shuttle Battery. Journal of Physical Chemistry C, 2019, 123, 10246-10252.                               | 1.5 | 33        |
| 111 | Effect of co-intercalated organic solvents in graphite on electrochemical Li intercalation. Synthetic<br>Metals, 2001, 125, 249-253.                                                                                                | 2.1 | 32        |
| 112 | Triphenylboroxine and Triphenylborane as Anion Acceptors for Electrolyte in Fluoride Shuttle<br>Batteries. Chemistry Letters, 2018, 47, 1346-1349.                                                                                  | 0.7 | 32        |
| 113 | Electrochemical properties of graphite electrode in propylene carbonate-based electrolytes containing lithium and calcium ions. Electrochimica Acta, 2011, 56, 10450-10453.                                                         | 2.6 | 31        |
| 114 | Electrochemical Intercalation/De-Intercalation of Lithium lons at Graphite Negative Electrode in TMP-Based Electrolyte Solution. Journal of the Electrochemical Society, 2012, 159, A2089-A2091.                                    | 1.3 | 31        |
| 115 | In situ Raman study on degradation of edge plane graphite negative-electrodes and effects of film-forming additives. Journal of Power Sources, 2012, 206, 320-324.                                                                  | 4.0 | 31        |
| 116 | Kinetics of Lithium-Ion Transfer at the Interface between Li4Ti5O12 Thin Films and Organic Electrolytes. ECS Electrochemistry Letters, 2014, 3, A83-A86.                                                                            | 1.9 | 31        |
| 117 | Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries. Chemical Communications, 2016, 52, 4979-4982.                                                                             | 2.2 | 31        |
| 118 | Inâ€Situ Raman Spectroscopic Studies on Concentration of Electrolyte Salt in Lithiumâ€ion Batteries by<br>Using Ultrafine Multifiber Probes. ChemSusChem, 2017, 10, 855-861.                                                        | 3.6 | 31        |
| 119 | Observation of the intercalation of dimethyl sulfoxide-solvated lithium ion into graphite and decomposition of the ternary graphite intercalation compound using in situ Raman spectroscopy. Electrochimica Acta, 2018, 265, 41-46. | 2.6 | 31        |
| 120 | Electrochemical Properties of Carbonaceous Thin Films Prepared by Plasma Chemical Vapor<br>Deposition. Journal of the Electrochemical Society, 2001, 148, A1260.                                                                    | 1.3 | 30        |
| 121 | Low-temperature synthesis of graphitized nanofibers for reversible lithium-ion insertion/extraction.<br>Electrochemistry Communications, 2005, 7, 10-13.                                                                            | 2.3 | 30        |
| 122 | Lithium-ion transfer at the interfaces between LiCoO2 and LiMn2O4 thin film electrodes and organic electrolytes. Journal of Power Sources, 2015, 294, 460-464.                                                                      | 4.0 | 30        |
| 123 | Electrochemical properties of lead fluoride electrode in fluoride shuttle battery. Journal of<br>Electroanalytical Chemistry, 2018, 826, 60-64.                                                                                     | 1.9 | 30        |
| 124 | Electrochemical properties of LiCoPO4-thin film electrodes in LiF-based electrolyte solution with anion receptors. Journal of Power Sources, 2016, 306, 753-757.                                                                    | 4.0 | 29        |
| 125 | Proton conductivity of (NH4)2TiP4O13-based material for intermediate temperature fuel cells.<br>Electrochemistry Communications, 2004, 6, 180-182.                                                                                  | 2.3 | 28        |
| 126 | Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite in Sulphuric Acid Solution under<br>Potential Pulse Condition. Fuel Cells, 2009, 9, 284-290.                                                                        | 1.5 | 28        |

Τακές η Αβε

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Synthesis and electrochemical performance of hierarchically porous N-doped TiO2 for Li-ion batteries. New Journal of Chemistry, 2014, 38, 1380.                                                                                 | 1.4 | 28        |
| 128 | Lithium-ion intercalation and deintercalation behaviors of graphitized carbon nanospheres. Journal of Materials Chemistry A, 2018, 6, 1128-1137.                                                                                | 5.2 | 28        |
| 129 | Chargeâ€Transfer Kinetics of The Solidâ€Electrolyte Interphase on<br>Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> Thinâ€Film Electrodes. ChemSusChem, 2020, 13, 4041-4050.                                                   | 3.6 | 28        |
| 130 | Nucleation and phase-boundary movement upon stage transformation in lithium–graphite<br>intercalation compounds. Electrochimica Acta, 1999, 45, 865-871.                                                                        | 2.6 | 27        |
| 131 | Plasma etching of SiC surface using NF3. Journal of Vacuum Science and Technology A: Vacuum,<br>Surfaces and Films, 2002, 20, 1254-1260.                                                                                        | 0.9 | 27        |
| 132 | Ion Transport in Organic Electrolyte Solution through the Pore Channels of Anodic Nanoporous<br>Alumina Membranes. Electrochimica Acta, 2016, 199, 380-387.                                                                     | 2.6 | 27        |
| 133 | In Situ Measurement of Local pH at Working Electrodes in Neutral pH Solutions by the Rotating<br>Ringâ€Đisk Electrode Technique. ChemElectroChem, 2019, 6, 4750-4756.                                                           | 1.7 | 27        |
| 134 | Improved electrochemical performances in a bismuth fluoride electrode prepared using a high energy<br>ball mill with carbon for fluoride shuttle batteries. Journal of Electroanalytical Chemistry, 2019, 839,<br>173-176.      | 1.9 | 27        |
| 135 | Investigation of Electrochemical Sodium-Ion Intercalation Behavior into Graphite-Based Electrodes.<br>Journal of the Electrochemical Society, 2019, 166, A5323-A5327.                                                           | 1.3 | 27        |
| 136 | Lithium-ion transfer at a solid polymer electrolyte/non-graphitizable carbon electrode interface.<br>Journal of Power Sources, 2005, 142, 329-332.                                                                              | 4.0 | 25        |
| 137 | Lithium-Ion Transfer at an Electrolyte/Heat-Treated Nongraphitizable Carbon Electrode Interface.<br>Journal of the Electrochemical Society, 2005, 152, A1521.                                                                   | 1.3 | 25        |
| 138 | Potassium Salts. Electrochemical and Solid-State Letters, 2006, 9, A115.                                                                                                                                                        | 2.2 | 25        |
| 139 | Electrochemical Analysis of Lithium-Ion Transfer Reaction through the Interface between Ceramic<br>Electrolyte and Ionic Liquids. Journal of the Electrochemical Society, 2012, 159, A1766-A1769.                               | 1.3 | 25        |
| 140 | Structural insights into ion conduction of layered double hydroxides with various proportions of trivalent cations. Journal of Materials Chemistry A, 2013, 1, 14569.                                                           | 5.2 | 25        |
| 141 | Electrochemical performance of a lead fluoride electrode mixed with carbon in an electrolyte containing triphenylboroxine as an anion acceptor for fluoride shuttle batteries. Materials Chemistry and Physics, 2019, 226, 1-5. | 2.0 | 25        |
| 142 | Study of the Decomposition of Propylene Carbonate on Lithium Metal Surface by Pyrolysisâ^'Gas<br>Chromatographyâ^'Mass Spectroscopy. Langmuir, 2003, 19, 814-821.                                                               | 1.6 | 24        |
| 143 | Influence of surfactants as additives to electrolyte solutions on zinc electrodeposition and potential oscillation behavior. Journal of Applied Electrochemistry, 2016, 46, 1067-1073.                                          | 1.5 | 24        |
| 144 | Electrochemical AFM Study of Surface Films Formed on the HOPG Edge Plane in Propylene<br>Carbonate-Based Electrolytes. Journal of the Electrochemical Society, 2013, 160, A678-A683.                                            | 1.3 | 23        |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | High-Rate Charging of Zinc Anodes Achieved by Tuning Hydration Properties of Zinc Complexes in<br>Water Confined within Nanopores. Journal of Physical Chemistry C, 2016, 120, 24112-24120.                                                                          | 1.5 | 23        |
| 146 | Influence of carbonaceous materials on electronic conduction in electrode-slurry. Carbon, 2017, 122, 202-206.                                                                                                                                                        | 5.4 | 23        |
| 147 | Evolution of Reactions of a Fluoride Shuttle Battery at the Surfaces of BiF <sub>3</sub><br>Microclusters Studied by Inâ€Situ Raman Microscopy. ChemSusChem, 2019, 12, 527-534.                                                                                      | 3.6 | 23        |
| 148 | Using siloxane-based liquid electrolytes with high stability for fluoride shuttle batteries. Journal of<br>Materials Chemistry A, 2020, 8, 22134-22142.                                                                                                              | 5.2 | 23        |
| 149 | Surface modification of graphitized carbonaceous materials by electropolymerization of thiophene and their effects on electrochemical properties. Carbon, 2005, 43, 2352-2357.                                                                                       | 5.4 | 22        |
| 150 | In situ Raman study on the structural degradation of a graphite composite negative-electrode and the influence of the salt in the electrolyte solution. Journal of Power Sources, 2013, 236, 138-144.                                                                | 4.0 | 22        |
| 151 | In Situ Raman Study of Graphite Negative-Electrodes in Electrolyte Solution Containing Fluorinated Phosphoric Esters. Journal of the Electrochemical Society, 2014, 161, A480-A485.                                                                                  | 1.3 | 22        |
| 152 | In situ Raman investigation of electrolyte solutions in the vicinity of graphite negative electrodes.<br>Physical Chemistry Chemical Physics, 2016, 18, 27486-27492.                                                                                                 | 1.3 | 22        |
| 153 | Ultrafine Fiber Raman Probe with High Spatial Resolution and Fluorescence Noise Reduction. Journal of Physical Chemistry C, 2016, 120, 2585-2591.                                                                                                                    | 1.5 | 22        |
| 154 | Strontium cobalt oxychlorides: enhanced electrocatalysts for oxygen reduction and evolution reactions. Chemical Communications, 2017, 53, 2713-2716.                                                                                                                 | 2.2 | 22        |
| 155 | Difference of rate performance between discharge and charge reactions for bismuth fluoride electrode in lithium-ion battery. Journal of Electroanalytical Chemistry, 2017, 806, 82-87.                                                                               | 1.9 | 22        |
| 156 | Experimental Visualization of Interstitialcy Diffusion Pathways in Fast-Fluoride-Ion-Conducting Solid<br>Electrolyte Ba <sub>0.6</sub> La <sub>0.4</sub> F <sub>2.4</sub> . ACS Applied Energy Materials, 2020, 3,<br>2873-2880.                                     | 2.5 | 22        |
| 157 | Surface film formation on nickel electrodes in a propylene carbonate solution at elevated temperatures. Journal of Power Sources, 2002, 108, 163-173.                                                                                                                | 4.0 | 21        |
| 158 | Lithium-Ion Transfer at the Interface between High Potential Negative Electrodes and Ionic Liquids.<br>Journal of the Electrochemical Society, 2014, 161, A1939-A1942.                                                                                               | 1.3 | 21        |
| 159 | In situ Raman spectroscopic studies on concentration change of electrolyte salt in a lithium ion<br>model battery with closely faced graphite composite and LiCoO 2 composite electrodes by using an<br>ultrafine microprobe. Electrochimica Acta, 2017, 234, 93-98. | 2.6 | 21        |
| 160 | STM Study of Well-Defined Graphite/Electrolyte Interface Polarized in Propylene Carbonate Solution Containing 12-Crown-4. Electrochemistry, 1999, 67, 1153-1155.                                                                                                     | 0.6 | 21        |
| 161 | Synthesis of highly graphitized carbonaceous thin films by plasma assisted chemical vapor deposition<br>and their electrochemical properties in propylene carbonate solution. Electrochemistry<br>Communications, 2002, 4, 310-313.                                  | 2.3 | 20        |
| 162 | Effect of an Alkyl Dicarbonate on Li-Ion Cell Performance. Journal of the Electrochemical Society, 2005, 152, A1963.                                                                                                                                                 | 1.3 | 20        |

Τακές ΗΙ Αβέ

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | A simple method of electrochemical lithium intercalation within graphite from a propylene carbonate-based solution. Electrochemistry Communications, 2013, 31, 24-27.                             | 2.3 | 20        |
| 164 | Investigation of Electronic Resistance in Lithium-Ion Batteries by AC Impedance Spectroscopy. Journal of the Electrochemical Society, 2017, 164, A3862-A3867.                                     | 1.3 | 20        |
| 165 | Assessing Reaction Mechanisms of Graphite Negative Electrodes Based on Operando Synchrotron<br>Radiation Diffraction Data. Journal of the Electrochemical Society, 2021, 168, 040509.             | 1.3 | 20        |
| 166 | In situ atomic force microscopy observation of lithium deposition at an elevated temperature. Journal of Power Sources, 2001, 97-98, 265-268.                                                     | 4.0 | 19        |
| 167 | Soft Carbon-coated Hard Carbon Beads as a Lithium-ion Battery Anode Material. Chemistry Letters, 2003, 32, 1130-1131.                                                                             | 0.7 | 19        |
| 168 | Electro-oxidation of Methanol on Gold Nanoparticles Supported on Ptâ^•MoO[sub x]â^•C. Journal of the Electrochemical Society, 2005, 152, A1870.                                                   | 1.3 | 19        |
| 169 | Enhancing Effect of Carbon Surface in the Non-Aqueous Li-O2 Battery Cathode. Electrochemistry, 2012, 80, 783-786.                                                                                 | 0.6 | 19        |
| 170 | Electrochemical lithium ion intercalation into graphite electrode in propylene carbonate-based electrolytes with dimethyl carbonate and calcium salt. Journal of Power Sources, 2013, 238, 65-68. | 4.0 | 19        |
| 171 | In Situ Observation of Fluoride Shuttle Battery Reactions with Dissolution-Deposition Mechanisms by Raman Microscopy. Journal of the Electrochemical Society, 2019, 166, A635-A640.               | 1.3 | 19        |
| 172 | Electrochemical STM Study on Surface Morphology Change of HOPG Basal Plane in an Organic<br>Electrolyte Solution. Chemistry Letters, 1995, 24, 661-662.                                           | 0.7 | 18        |
| 173 | Preparation of surface-modified carbonaceous thin-film electrodes by NF3 plasma and their electrochemical properties. Journal of Power Sources, 2005, 146, 151-155.                               | 4.0 | 18        |
| 174 | Influence of Surface Orientation on the Catalytic Activities of La 0.8 Sr 0.2 CoO 3 Crystal Electrodes for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2016, 3, 214-217.           | 1.7 | 18        |
| 175 | Surface composition of a SiO x film anode cycled in carbonate electrolyte for Li-ion batteries.<br>Electrochimica Acta, 2017, 229, 438-444.                                                       | 2.6 | 18        |
| 176 | Electrochemical Properties of a SiO <i><sub>x</sub></i> Film Anode Pre-lithiated by Evaporation of Metallic Li in Li-ion Batteries. Chemistry Letters, 2017, 46, 1365-1367.                       | 0.7 | 18        |
| 177 | Sequential delithiation behavior and structural rearrangement of a nanoscale composite-structured<br>Li1.2Ni0.2Mn0.6O2 during charge–discharge cycles. Scientific Reports, 2020, 10, 10048.       | 1.6 | 18        |
| 178 | Bi-intercalation of H2SO4 into stages 4–6 FeCl3–graphite intercalation compounds. Journal of<br>Materials Research, 1993, 8, 1586-1595.                                                           | 1.2 | 17        |
| 179 | Calorimetric Study on the Hysteresis in the Charge-Discharge Profiles of Mesocarbon Microbeads<br>Heat-Treated at Low Temperatures. Journal of the Electrochemical Society, 2000, 147, 4008.      | 1.3 | 17        |
| 180 | New Li2FeSiO4–carbon monoliths with controlled macropores: effects of pore properties on electrode performance. Physical Chemistry Chemical Physics, 2013, 15, 8736.                              | 1.3 | 17        |

| #   | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Implications of Testing a Zinc–Oxygen Battery with Zinc Foil Anode Revealed by Operando Gas Analysis.<br>ACS Omega, 2020, 5, 626-633.                                                                                                                                                        | 1.6 | 17        |
| 182 | Chromogenic Amorphous MoO <sub>3–<i>x</i></sub> Nanosheets and Their Nanostructured Films for Smart Window Applications. ACS Applied Nano Materials, 2021, 4, 8781-8788.                                                                                                                     | 2.4 | 17        |
| 183 | Effect of pyrophosphates as supporting matrices on proton conductivity for NH4PO3 composites at intermediate temperatures. Journal of Power Sources, 2007, 171, 483-488.                                                                                                                     | 4.0 | 16        |
| 184 | TEM observation of heterogeneous polyhedronization behavior in graphitized carbon nanospheres.<br>Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148,<br>245-248.                                                                                 | 1.7 | 16        |
| 185 | Development and degradation of graphitic microtexture in carbon nanospheres under a morphologically restrained condition. Materials Chemistry and Physics, 2010, 121, 419-424.                                                                                                               | 2.0 | 16        |
| 186 | In situ Raman spectroscopic analysis of solvent co-intercalation behavior into a solid electrolyte interphase-covered graphite electrode. Journal of Applied Electrochemistry, 2019, 49, 639-646.                                                                                            | 1.5 | 16        |
| 187 | <i>In Situ</i> Local pH Measurements with Hydrated Iridium Oxide Ring Electrodes in Neutral pH Aqueous Solutions. Chemistry Letters, 2020, 49, 195-198.                                                                                                                                      | 0.7 | 16        |
| 188 | Influence of defects on the phase-boundary movement in a stage transformation of lithium-graphite intercalation compounds. Carbon, 1999, 37, 1591-1598.                                                                                                                                      | 5.4 | 15        |
| 189 | High Rate Discharge Performance and Thermal Stability of Heat-Treated Carbon Nanobeads. Journal of the Electrochemical Society, 2009, 156, A682.                                                                                                                                             | 1.3 | 15        |
| 190 | Single-Step Synthesis of Nanosized Titanium-Based Oxide/Carbon Nanotube Composites by Electrospray Deposition and Their Electrochemical Properties. Journal of Physical Chemistry C, 2009, 113, 7719-7722.                                                                                   | 1.5 | 15        |
| 191 | Surface Modification of Graphitized Carbonaceous Thin-Film Electrodes with Silver for Enhancement of Interfacial Lithium-Ion Transfer. Journal of Physical Chemistry C, 2012, 116, 12422-12425.                                                                                              | 1.5 | 15        |
| 192 | Hierarchically porous monoliths of oxygen-deficient anatase TiO2â^'x with electronic conductivity.<br>RSC Advances, 2013, 3, 7205.                                                                                                                                                           | 1.7 | 15        |
| 193 | Electrochemical preparation of a lithium–graphite-intercalation compound in a dimethyl sulfoxide-based electrolyte containing calcium ions. Carbon, 2013, 57, 232-238.                                                                                                                       | 5.4 | 15        |
| 194 | Spectroscopic Analysis of Surface Layers in Close Contact with Edge Plane Graphite<br>Negative-Electrodes. Journal of the Electrochemical Society, 2013, 160, A575-A580.                                                                                                                     | 1.3 | 15        |
| 195 | Structural stabilization on SiO x film anode with large areal capacity for enhanced cyclability in lithium-ion batteries. Journal of Power Sources, 2016, 324, 45-51.                                                                                                                        | 4.0 | 15        |
| 196 | Suppression of Co-Intercalation Reaction of Propylene Carbonate and Lithium Ion into Graphite<br>Negative Electrode by Addition of Diglyme. Journal of the Electrochemical Society, 2016, 163,<br>A1265-A1269.                                                                               | 1.3 | 15        |
| 197 | Insight into the state of the ZrO2 coating on a LiCoO2 thin-film electrode using the ferrocene redox reaction. Journal of Applied Electrochemistry, 2017, 47, 1203-1211.                                                                                                                     | 1.5 | 15        |
| 198 | Mechanism of the Loss of Capacity of LiNiO <sub>2</sub> Electrodes for Use in Aqueous Li-Ion<br>Batteries: Unveiling a Fundamental Cause of Deterioration in an Aqueous Electrolyte through <i>In<br/>Situ</i> Raman Observation. ACS Applied Materials & Interfaces, 2020, 12, 56076-56085. | 4.0 | 15        |

Такезні Аве

| #   | Article                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Evolution of Fluoride Shuttle Battery Reactions of BiF <sub>3</sub> Microparticles in a<br>CsF/LiBOB/Tetraglyme Electrolyte: Dependence on Structure, Size, and Shape. ACS Applied Energy<br>Materials, 2020, 3, 9390-9400.                                                                                  | 2.5  | 15        |
| 200 | Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts. Chemistry of Materials, 2020, 32, 8195-8202.                                                                                                                                                                       | 3.2  | 15        |
| 201 | Cathodeâ€Electrolyteâ€Interphase Film Formation on a LiNiO <sub>2</sub> Surface in Conventional<br>Aqueous Electrolytes: Simple Method to Improve the Electrochemical Performance of<br>LiNiO <sub>2</sub> Electrodes for Use in Aqueous Liâ€Ion Batteries. Advanced Energy Materials, 2021, 11,<br>2100756. | 10.2 | 15        |
| 202 | Effect of Calcination Conditions on Porous Reduced Titanium Oxides and Oxynitrides via a Preceramic Polymer Route. Inorganic Chemistry, 2015, 54, 2802-2808.                                                                                                                                                 | 1.9  | 14        |
| 203 | Investigations of Electrochemically Active Regions in Bifunctional Air Electrodes Using Partially<br>Immersed Platinum Electrodes. Journal of the Electrochemical Society, 2015, 162, A1646-A1653.                                                                                                           | 1.3  | 14        |
| 204 | Penetration of Platinum Complex Anions into Porous Silicon: Anomalous Behavior Caused by Surface-Induced Phase Transition. Journal of Physical Chemistry C, 2015, 119, 19105-19116.                                                                                                                          | 1.5  | 14        |
| 205 | Analysis of Cathode Reactions of Lithium Ion Cells Using Dynamic Electrochemical Impedance. Journal of the Electrochemical Society, 2020, 167, 020502.                                                                                                                                                       | 1.3  | 14        |
| 206 | Lactone-Based Liquid Electrolytes for Fluoride Shuttle Batteries. Journal of the Electrochemical Society, 2021, 168, 010529.                                                                                                                                                                                 | 1.3  | 14        |
| 207 | Carbonate formation on carbon electrode in rechargeable zinc-air battery revealed by in-situ Raman measurements. Journal of Power Sources, 2022, 533, 231237.                                                                                                                                                | 4.0  | 14        |
| 208 | Electrochemical effect of gold nanoparticles on Pt/α-Fe2O3/C for use in methanol oxidation in alkaline solution. Electrochimica Acta, 2007, 52, 3582-3587.                                                                                                                                                   | 2.6  | 13        |
| 209 | Effects of specific adsorption of copper (II) ion on charge transfer reaction at the thin film LiMn2O4 electrode/aqueous electrolyte interface. Electrochimica Acta, 2009, 54, 3428-3432.                                                                                                                    | 2.6  | 13        |
| 210 | Aminated Perfluorosulfonic Acid Ionomers to Improve the Triple Phase Boundary Region in<br>Anion-Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2010, 157, A1153.                                                                                                                     | 1.3  | 13        |
| 211 | In Situ Raman Study on Reversible Structural Changes of Graphite Negative-Electrodes at High<br>Potentials in LiPF <sub>6</sub> -Based Electrolyte Solution. Journal of the Electrochemical Society,<br>2016, 163, A2435-A2440.                                                                              | 1.3  | 13        |
| 212 | Irreversible morphological changes of a graphite negative-electrode at high potentials in<br>LiPF <sub>6</sub> -based electrolyte solution. Physical Chemistry Chemical Physics, 2016, 18,<br>22426-22433.                                                                                                   | 1.3  | 13        |
| 213 | Cycling Fading Mechanism for a Bismuth Fluoride Electrode in a Lithiumâ€ <del>l</del> on Battery. ChemistrySelect,<br>2017, 2, 3504-3510.                                                                                                                                                                    | 0.7  | 13        |
| 214 | In situ diagnosis of the electrolyte solution in a laminate lithium ion battery by using ultrafine multi-probe Raman spectroscopy. Journal of Power Sources, 2017, 359, 435-440.                                                                                                                             | 4.0  | 13        |
| 215 | Interface structure between tetraglyme and graphite. Journal of Chemical Physics, 2017, 147, 124701.                                                                                                                                                                                                         | 1.2  | 13        |
| 216 | Evolution and Migration of Lithium-Deficient Phases during Electrochemical Delithiation of Large<br>Single Crystals of LiFePO <sub>4</sub> . ACS Applied Energy Materials, 2018, 1, 1140-1145.                                                                                                               | 2.5  | 13        |

Τακές ΗΙ Αβέ

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Reactivity and Mechanisms in Fluoride Shuttle Battery Reactions: Difference between Orthorhombic<br>and Cubic BiF <sub>3</sub> Single Microparticles. ACS Applied Energy Materials, 2019, 2, 8801-8808.                                           | 2.5 | 13        |
| 218 | Borolan-2-yl involving anion acceptors for organic liquid electrolyte-based fluoride shuttle<br>batteries. Journal of Fluorine Chemistry, 2020, 240, 109672.                                                                                      | 0.9 | 13        |
| 219 | Reactivity of the anion acceptor in electrolyte: An important factor in achieving high electrochemical performance of a lead (II) fluoride electrode in a fluoride shuttle battery. Journal of Electroanalytical Chemistry, 2020, 871, 114103.    | 1.9 | 13        |
| 220 | Lithium-ion-conductive polyethylene oxide based polymer electrolytes containing<br>tris(pentafluorophyenyl)borane. Journal of Fluorine Chemistry, 2003, 123, 279-282.                                                                             | 0.9 | 12        |
| 221 | Surface Film Formation on Graphite Negative Electrode at Elevated Temperatures. Electrochemistry, 2003, 71, 1132-1135.                                                                                                                            | 0.6 | 12        |
| 222 | Electrochemical Properties of Graphitized Carbonaceous Thin Films Prepared by PACVD. Journal of the Electrochemical Society, 2004, 151, C694.                                                                                                     | 1.3 | 12        |
| 223 | Effect of the Addition of Bivalent Ions on Electrochemical Lithium-Ion Intercalation at Graphite Electrodes. Journal of the Electrochemical Society, 2016, 163, A1693-A1696.                                                                      | 1.3 | 12        |
| 224 | Comparative study of approaches to achieve improved cyclability and high capacity in a silicon suboxide film anode for lithium-ion batteries. Electrochimica Acta, 2017, 245, 1005-1009.                                                          | 2.6 | 12        |
| 225 | Development of New Electronic Conductivity Measurement Method for Lithium-ion Battery<br>Electrode–Slurry. Chemistry Letters, 2017, 46, 892-894.                                                                                                  | 0.7 | 12        |
| 226 | In Situ AFM Observation of Surface Morphology of Highly Oriented Pyrolytic Graphite in Propylene<br>Carbonate-Based Electrolyte Solutions Containing Lithium and Bivalent Cations. Journal of the<br>Electrochemical Society, 2017, 164, A48-A53. | 1.3 | 12        |
| 227 | Structural and Electrochemical Properties of Tysonite Ce0.95A0.05F2.95 (A = Mg, Ca, Sr, and Ba):<br>Fast-Fluoride-Ion-Conducting Solid Electrolytes. Journal of Physical Chemistry C, 2020, 124,<br>18452-18461.                                  | 1.5 | 12        |
| 228 | Reversible Electrochemical Reaction of a Fluoride Shuttle Battery with a Bismuth(III) Fluoride<br>Electrode and Electrolyte Containing Triphenylboroxine as an Anion Acceptor. ChemistrySelect, 2020,<br>5, 6237-6241.                            | 0.7 | 12        |
| 229 | Electrochemical behavior of CuF2 as reversible cathode in an organic liquid electrolyte for room-temperature fluoride-shuttle batteries. Journal of Power Sources, 2021, 496, 229828.                                                             | 4.0 | 12        |
| 230 | Electrochemical Intercalation of Li into Carbon Thin Films Prepared by Plasma CVD. Molecular<br>Crystals and Liquid Crystals, 2000, 340, 517-522.                                                                                                 | 0.3 | 11        |
| 231 | Lithium Ion Transfer At Carbon Thin Film Electrode/Electrolyte Interface. Molecular Crystals and<br>Liquid Crystals, 2002, 388, 141-146.                                                                                                          | 0.4 | 11        |
| 232 | Lithium-ion transfer between LixCoO2and polymer gel electrolytes. Science and Technology of<br>Advanced Materials, 2006, 7, 519-523.                                                                                                              | 2.8 | 11        |
| 233 | Electrochemical STM Observation of Li[sub 1+x]Mn[sub 2â^'x]O[sub 4] Thin Films Prepared by Pulsed<br>Laser Deposition. Journal of the Electrochemical Society, 2008, 155, A20.                                                                    | 1.3 | 11        |
| 234 | What insertion species is electrochemically intercalated into the LiNiO2 electrode in aqueous solutions?. Journal of Power Sources, 2020, 477, 229036.                                                                                            | 4.0 | 11        |

Τακές η Αβε

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | A new Bi0.7Fe1.3O1.5F1.7 phase: Crystal structure, magnetic properties, and cathode performance in fluoride-ion batteries. APL Materials, 2020, 8, .                                                                                | 2.2 | 11        |
| 236 | Effect of anion acceptor added to the electrolyte on the electrochemical performance of bismuth(III) fluoride in a fluoride shuttle battery. Chemical Physics Letters, 2020, 755, 137785.                                           | 1.2 | 11        |
| 237 | Lithium-ion Transfer Kinetics through Solid Electrolyte Interphase on Graphite Electrodes.<br>Electrochemistry, 2020, 88, 69-73.                                                                                                    | 0.6 | 11        |
| 238 | Ionic liquid-containing cathodes empowering ceramic solid electrolytes. IScience, 2022, 25, 103896.                                                                                                                                 | 1.9 | 11        |
| 239 | Phase Diagram of Li-Graphite Intercalation Compound Formed by the Charge/Discharge Reaction in<br>Li-Ion Battery. Journal of the Electrochemical Society, 2022, 169, 070507.                                                        | 1.3 | 11        |
| 240 | Effect of oxygen concentration on the spike formation during reactive ion etching of SiC using the<br>mixed gas plasma of NF3 and O2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and<br>Films, 2007, 25, 391-400. | 0.9 | 10        |
| 241 | Lactone Formation on Carbonaceous Materials during Electrochemical Oxidation. Chemistry Letters, 2009, 38, 788-789.                                                                                                                 | 0.7 | 10        |
| 242 | Lithium-ion Transfer at the Interface between Solid and Liquid Electrolytes under Applying DC Voltage. Chemistry Letters, 2010, 39, 826-827.                                                                                        | 0.7 | 10        |
| 243 | Preparation and electrochemical properties of SiO2–non-graphitizable carbon composites as negative electrode materials for Li-ion batteries. Journal of Applied Electrochemistry, 2012, 42, 69-74.                                  | 1.5 | 10        |
| 244 | Effect of cation species on surface-induced phase transition observed for platinum complex anions in platinum electrodeposition using nanoporous silicon. Journal of Chemical Physics, 2014, 141, 074701.                           | 1.2 | 10        |
| 245 | Accelerated growth from amorphous clusters to metallic nanoparticles observed in electrochemical deposition of platinum within nanopores of porous silicon. Electrochemistry Communications, 2016, 71, 9-12.                        | 2.3 | 10        |
| 246 | Investigation of the Surface State of LiCoO2Thin-Film Electrodes Using a Redox Reaction of Ferrocene.<br>Journal of the Electrochemical Society, 2017, 164, A555-A559.                                                              | 1.3 | 10        |
| 247 | In situ Raman spectroscopic studies on concentration change of ions in the electrolyte solution in separator regions in a lithium ion battery by using multi-microprobes. Electrochemistry Communications, 2017, 77, 32-35.         | 2.3 | 10        |
| 248 | Direct measurements of local current distributions on electrodes covered with thin liquid electrolyte films. Electrochemistry Communications, 2017, 84, 53-56.                                                                      | 2.3 | 10        |
| 249 | Diffusion of Li-deficient phases in large LiFePO4 single crystals during chemical delithiation. Journal of Materials Chemistry A, 2018, 6, 11005-11011.                                                                             | 5.2 | 10        |
| 250 | Formation and Propagation of Fluorine-Deficient Phases in Large LaF <sub>3</sub> Single Crystals during Electrochemical Defluorination. ACS Applied Energy Materials, 2019, 2, 3092-3097.                                           | 2.5 | 10        |
| 251 | Fluoride shuttle batteries: On the performance of the BiF3 electrode in organic liquid electrolytes<br>containing a mixture of lithium bis(oxalato)borate and triphenylboroxin. Solid State Ionics, 2020, 357,<br>115499.           | 1.3 | 10        |
| 252 | Electrochemical Performance of BiF 3 â€BaF 2 Solid Solution with Three Different Phases on a Fluoride<br>Shuttle Battery System. ChemistrySelect, 2020, 5, 4943-4946.                                                               | 0.7 | 10        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Electrochemical Lithiation/Delithiation of ZnO in 3D-Structured Electrodes: Elucidating the<br>Mechanism and the Solid Electrolyte Interphase Formation. ACS Applied Materials & Interfaces,<br>2021, 13, 35625-35638.                               | 4.0 | 10        |
| 254 | Influence of LiBOB as an Electrolyte Additive on the Performance of BiF <sub>3</sub> /C for Fluoride Shuttle Batteries. Journal of the Electrochemical Society, 2020, 167, 120508.                                                                   | 1.3 | 10        |
| 255 | Reversible Charge/Discharge Reaction of a Ternary Metal Fluoride, Pb <sub>2</sub> CuF <sub>6</sub> : A<br>Highly Conductive Cathode Material for Fluoride-Ion Batteries. ACS Applied Energy Materials, 2022, 5,<br>1002-1009.                        | 2.5 | 10        |
| 256 | Debye-Waller factors of FeCl3- and ICl-graphite intercalation compounds. Carbon, 1995, 33, 1789-1793.                                                                                                                                                | 5.4 | 9         |
| 257 | Surface film formation on graphite negative electrodes in rechargeable lithium batteries.<br>Macromolecular Symposia, 2000, 156, 195-202.                                                                                                            | 0.4 | 9         |
| 258 | Raman scattering study of acceptor-acceptor-type graphite bi-intercalation compounds. Physical Review B, 2000, 61, 11344-11347.                                                                                                                      | 1.1 | 9         |
| 259 | Electrochemical Reaction Mechanism for<br>Bi <sub>1â€<i>x</i></sub> Ba <sub><i>x</i></sub> F <sub>3â€<i>x</i></sub> ( <i>x</i> =0, 0.1, 0.2, and 0.4)<br>Electrodes in Lithiumâ€Ion Batteries. ChemistrySelect, 2017, 2, 6399-6406.                  | 0.7 | 9         |
| 260 | Charge and Discharge Reactions of a Lead Fluoride Electrode in a Liquidâ€Based Electrolyte for Fluoride<br>Shuttle Batteries:â€The Role of Triphenylborane as an Anion Acceptorâ€: ChemistrySelect, 2019, 4,<br>5984-5987.                           | 0.7 | 9         |
| 261 | Low-Cost Fluoride Source for Organic Liquid Electrolyte-Based Fluoride Shuttle Battery. Journal of the Electrochemical Society, 2021, 168, 010501.                                                                                                   | 1.3 | 9         |
| 262 | Kinetic properties of sodium-ion transfer at the interface between graphitic materials and organic electrolyte solutions. Journal of Applied Electrochemistry, 2021, 51, 629-638.                                                                    | 1.5 | 9         |
| 263 | Preparation of LiMn[sub 2]O[sub 4] Thin-Film Electrode by the Oxygen Plasma-Assisted Sol-Gel Method.<br>Electrochemical and Solid-State Letters, 2004, 7, A481.                                                                                      | 2.2 | 8         |
| 264 | Novel Graphitised Carbonaceous Materials for Use as a Highly Corrosionâ€Tolerant Catalyst Support in<br>Polymer Electrolyte Fuel Cells. Fuel Cells, 2010, 10, 960-965.                                                                               | 1.5 | 8         |
| 265 | Effects of Cyclic Ether Addition on Intercalation/De-Intercalation Reactions of Lithium Ion at Graphite<br>in Mn-Ion-Containing Electrolyte Solutions. Journal of the Electrochemical Society, 2016, 163,<br>A1607-A1611.                            | 1.3 | 8         |
| 266 | Correlations of concentration changes of electrolyte salt with resistance and capacitance at the surface of a graphite electrode in a lithium ion battery studied by in situ microprobe Raman spectroscopy. Electrochimica Acta, 2017, 251, 301-306. | 2.6 | 8         |
| 267 | Effect of Lewis Acids on Graphite-Electrode Properties in EC-Based Electrolyte Solutions with<br>Organophosphorus Compounds. Journal of the Electrochemical Society, 2018, 165, A680-A687.                                                           | 1.3 | 8         |
| 268 | Lithiumâ€lon Transfer at Cathodeâ€Electrolyte Interface in Diluted Electrolytes Using Electrochemical<br>Impedance Spectroscopy. ChemElectroChem, 2020, 7, 1644-1651.                                                                                | 1.7 | 8         |
| 269 | Electrochemical properties of surface-modified hard carbon electrodes for lithium-ion batteries.<br>Electrochimica Acta, 2021, 379, 138175.                                                                                                          | 2.6 | 8         |
| 270 | Electrochemical, Thermal, and Structural Features of BaF <sub>2</sub> –SnF <sub>2</sub><br>Fluoride-Ion Electrolytes. Journal of Physical Chemistry C, 2021, 125, 12568-12577.                                                                       | 1.5 | 8         |

Τακές ΗΙ Αβέ

| #   | Article                                                                                                                                                                                                                                              | IF             | CITATIONS               |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|
| 271 | Surface Plasma Modification of Carbonaceous Thin Film Electrodes. Electrochemistry, 2003, 71, 1111-1113.                                                                                                                                             | 0.6            | 8                       |
| 272 | Surface Modification Of Carbonaceous Thin Films By Nf 3 Plasma And Their Effects On<br>Electrochemical Properties. Molecular Crystals and Liquid Crystals, 2002, 388, 117-122.                                                                       | 0.4            | 7                       |
| 273 | Electrical conductivity change of AM-GICs by ternarization with ammonia. Journal of Physics and Chemistry of Solids, 2004, 65, 191-194.                                                                                                              | 1.9            | 7                       |
| 274 | Mechanism for Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite during Potential Cycling in Sulfuric Acid Solution. ECS Transactions, 2007, 11, 1003-1011.                                                                             | 0.3            | 7                       |
| 275 | Correlation between electrochemical and structural properties in NH4PO3/(NH4)2MP4O13 (M=Ti and) Tj ETQq1 I                                                                                                                                           | 0.78431<br>1.3 | 4 <sub>7</sub> gBT /Ov€ |
| 276 | Preparation of lithium manganese oxide fine particles by spray pyrolysis and their electrochemical properties. Journal of Power Sources, 2007, 174, 1057-1062.                                                                                       | 4.0            | 7                       |
| 277 | Formation of "fuzzy―phases with high proton conductivities in the composites of polyphosphoric acid and metal oxide nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 11135.                                                             | 1.3            | 7                       |
| 278 | Solid electrolyte interphase formation in propylene carbonate-based electrolyte solutions for<br>lithium-ion batteries based on the Lewis basicity of the co-solvent and counter anion. Journal of<br>Applied Electrochemistry, 2016, 46, 1099-1107. | 1.5            | 7                       |
| 279 | Investigation on Surface-Film Formation Behavior of LiMn2 O4 Thin-Film Electrodes in LiClO4<br>/Propylene Carbonate. ChemistrySelect, 2017, 2, 2895-2900.                                                                                            | 0.7            | 7                       |
| 280 | Nanoscale Defluorination Mechanism and Solid Electrolyte Interphase of a MgF <sub>2</sub> Anode in<br>Fluoride-Shuttle Batteries. ACS Applied Energy Materials, 2021, 4, 996-1003.                                                                   | 2.5            | 7                       |
| 281 | Relation between Mixing Processes and Properties of Lithium-ion Battery Electrode-slurry.<br>Electrochemistry, 2021, 89, 585-589.                                                                                                                    | 0.6            | 7                       |
| 282 | Alkali Metal Ion Insertion and Extraction on Non-Graphitizable Carbon with Closed Pore Structures.<br>Journal of the Electrochemical Society, 2021, 168, 070508.                                                                                     | 1.3            | 7                       |
| 283 | Analysis of Intercalation/De-Intercalation of Li Ions Into/From Graphite at 0 °C via Operando<br>Synchrotron X-ray Diffraction. Journal of the Electrochemical Society, 2021, 168, 090515.                                                           | 1.3            | 7                       |
| 284 | Ion-solvent interaction for lithium-ion transfer at the interface between carbonaceous thin-film electrode and electrolyte. Tanso, 2010, 2010, 188-191.                                                                                              | 0.1            | 7                       |
| 285 | Fluoride Ion-Selective Electrode for Organic Solutions. Analytical Chemistry, 2021, 93, 15058-15062.                                                                                                                                                 | 3.2            | 7                       |
| 286 | Electrochemical properties of Ni-rich LiNi Co Mn O2 materials for use in aqueous lithium-ion<br>batteries: How do they differ from those in non-aqueous systems?. Journal of Power Sources, 2022,<br>524, 231081.                                    | 4.0            | 7                       |
| 287 | Electrolytes for Room-Temperature Rechargeable Fluoride Shuttle Batteries. ACS Applied Energy<br>Materials, 0, , .                                                                                                                                   | 2.5            | 7                       |
| 288 | Amorphous Li–V–Si–O Thin Films as High-Voltage Negative Electrode Materials for Thin-Film<br>Rechargeable Lithium-Ion Batteries. Journal of the Electrochemical Society, 2006, 153, A1148.                                                           | 1.3            | 6                       |

| #   | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Dynamic manipulation of the local pH within a nanopore triggered by surface-induced phase transition. Physical Chemistry Chemical Physics, 2017, 19, 16323-16328.                                                                                                                                          | 1.3 | 6         |
| 290 | Mechanism of Accelerated Zinc Electrodeposition in Confined Nanopores, Revealed by X-ray<br>Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 18047-18056.                                                                                                               | 1.5 | 6         |
| 291 | Lithium-Ion Intercalation by Calcium-Ion Addition in Propylene Carbonate-Trimethyl Phosphate Electrolyte Solution. Journal of the Electrochemical Society, 2018, 165, A349-A354.                                                                                                                           | 1.3 | 6         |
| 292 | Defluorination/fluorination mechanism of Bi0.8Ba0.2F2.8 as a fluoride shuttle battery positive electrode. Journal of Electroanalytical Chemistry, 2021, 895, 115508.                                                                                                                                       | 1.9 | 6         |
| 293 | Li-Graphite Intercalation Compounds Synthesized in Various Ether-Type Organic Solvents. Tanso, 1998, 1998, 290-295.                                                                                                                                                                                        | 0.1 | 6         |
| 294 | Preparation and Electrochemical Properties of Carbonaceous Thin Films Prepared by C2H4/NF3 Glow<br>Discharge Plasma. Tanso, 1999, 1999, 252-256.                                                                                                                                                           | 0.1 | 6         |
| 295 | Effects of a Solid Solution Outer Layer of TiO <sub>2</sub> on the Surface and Electrochemical<br>Properties of LiNi <sub>0.6</sub> Co <sub>0.2</sub> Mn <sub>0.2</sub> O <sub>2</sub> Cathodes for<br>Lithium-Ion Batteries through the Use of Thin-Film Electrodes. ACS Applied Energy Materials, 0, , . | 2.5 | 6         |
| 296 | Preparation of FeCl3–IBr–H2SO4–graphite multi-intercalation compounds. Journal of Materials<br>Research, 1994, 9, 377-382.                                                                                                                                                                                 | 1.2 | 5         |
| 297 | Mass-spectrometric study of vaporization of FeCl3-graphite intercalation compound. Journal of Physics and Chemistry of Solids, 1996, 57, 787-790.                                                                                                                                                          | 1.9 | 5         |
| 298 | Influence of Supporting Materials on Catalytic Activities of Gold Nanoparticles as CO-Tolerant<br>Catalysts in DMFC. Electrochemistry, 2007, 75, 217-220.                                                                                                                                                  | 0.6 | 5         |
| 299 | Studies on Lithium-Ion Diffusion in Heat-Treated CNBs by Microelectrode Method. Journal of the Electrochemical Society, 2009, 156, A639.                                                                                                                                                                   | 1.3 | 5         |
| 300 | Intercalation/De-Intercalation Reactions of Lithium Ion at Graphite in Electrolyte Solutions<br>Containing 3D-Transition-Metal Ions and Cyclic Ethers. Journal of the Electrochemical Society, 2016,<br>163, A2849-A2853.                                                                                  | 1.3 | 5         |
| 301 | Acceptor-type hydroxide graphite intercalation compounds electrochemically formed in high ionic strength solutions. Chemical Communications, 2017, 53, 10034-10037.                                                                                                                                        | 2.2 | 5         |
| 302 | Effects of pored separator films at the anode and cathode sides on concentration changes of electrolyte salt in lithium ion batteries. Japanese Journal of Applied Physics, 2017, 56, 128002.                                                                                                              | 0.8 | 5         |
| 303 | Characterization of the Interface between LiMn <sub>2</sub> O <sub>4</sub> Thin-film Electrode and<br>LiBOB-based Electrolyte Solution by Redox Reaction of Ferrocene. Electrochemistry, 2018, 86, 254-259.                                                                                                | 0.6 | 5         |
| 304 | Electrochemical Stabilization of Self-Extinguishing Electrolyte Solutions with Trimethyl Phosphate by Adding Potassium Salts. Journal of Physical Chemistry C, 2018, 122, 12657-12664.                                                                                                                     | 1.5 | 5         |
| 305 | Reproducible and stable cycling performance data on secondary zinc oxygen batteries. Scientific Data, 2020, 7, 395.                                                                                                                                                                                        | 2.4 | 5         |
| 306 | Electrochemical Surface Analysis of LiMn <sub>2</sub> O <sub>4</sub> Thin-film Electrodes in<br>LiPF <sub>6</sub> /Propylene Carbonate at Room and Elevated Temperatures. Electrochemistry, 2021, 89,<br>19-24.                                                                                            | 0.6 | 5         |

Такезні Аве

| #   | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Effect of Electrolyte Additives on Kinetic Parameters of Lithium-ion Transfer Reactions at<br>Electrolyte/Graphite Interface. Electrochemistry, 2020, 88, 365-368.                                                                                              | 0.6 | 5         |
| 308 | Bi-intercalation of ICl into a stage-5FeCl3graphite intercalation compound. Physical Review B, 1995, 52, 14159-14162.                                                                                                                                           | 1.1 | 4         |
| 309 | X-ray diffraction and Raman scattering studies of FeCl <sub>3</sub> –SbCl <sub>5</sub> -graphite<br>bi-intercalation compounds. Journal of Materials Research, 1996, 11, 3039-3044.                                                                             | 1.2 | 4         |
| 310 | Measurement of Carbon Amount in Carbon-coated Graphite by Thermal Analysis. Chemistry Letters, 2002, 31, 238-239.                                                                                                                                               | 0.7 | 4         |
| 311 | Effects of Addition of Layered Double Hydroxide to Air Electrodes for Metal-Air Batteries.<br>Electrochemistry, 2012, 80, 728-730.                                                                                                                              | 0.6 | 4         |
| 312 | Electrochemical Performances of Zinc Oxide Electrodes Coated with Layered Double Hydroxides in Alkaline Solutions. Chemistry Letters, 2015, 44, 1359-1361.                                                                                                      | 0.7 | 4         |
| 313 | Electrochemical Behavior of Spinel Lithium Titanate in Ionic Liquid/Water Bilayer Electrolyte. Journal of the Electrochemical Society, 2016, 163, A2497-A2500.                                                                                                  | 1.3 | 4         |
| 314 | Electrochemical Behavior of Graphitized Carbon Nanospheres in a Propylene Carbonate-Based<br>Electrolyte Solution. Journal of the Electrochemical Society, 2018, 165, A2247-A2254.                                                                              | 1.3 | 4         |
| 315 | Concentrated Sodium Bis(fluorosulfonyl)amide Aqueous Electrolyte Solutions for Electric<br>Double-layer Capacitors. Electrochemistry, 2020, 88, 91-93.                                                                                                          | 0.6 | 4         |
| 316 | Xâ€Ray Total Scattering of Electrolytes in Liquidâ€Based Fluoride Shuttle Battery: Electrolyte<br>Composition Dependence of the Low―Q Peak. Physica Status Solidi (B): Basic Research, 2020, 257,<br>2000202.                                                   | 0.7 | 4         |
| 317 | Sodium/Lithium-Ion Transfer Reaction at the Interface between Low-Crystallized Carbon Nanosphere<br>Electrodes and Organic Electrolytes. ACS Omega, 2021, 6, 18737-18744.                                                                                       | 1.6 | 4         |
| 318 | Synchronized Operando Analysis of Graphite Negative Electrode of Li-Ion Battery. Journal of the<br>Electrochemical Society, 2021, 168, 080508.                                                                                                                  | 1.3 | 4         |
| 319 | Stabilizing the Nanosurface of LiNiO <sub>2</sub> Electrodes by Varying the Electrolyte<br>Concentration: Correlation with Initial Electrochemical Behaviors for Use in Aqueous Li-Ion<br>Batteries. ACS Applied Materials & Interfaces, 2021, 13, 44284-44293. | 4.0 | 4         |
| 320 | Debye-waller factors of ICI-graphite intercalation compounds prepared from natural graphite flakes<br>and graphitized polyimide films. Journal of Physics and Chemistry of Solids, 1996, 57, 783-786.                                                           | 1.9 | 3         |
| 321 | LITHIUM ION TRANSFER THROUGH THE INTERFACE BETWEEN POSITIVE ELECTRODE AND ELECTROLYTE IN RECHARGEABLE LITHIUM BATTERIES. , 2002, , .                                                                                                                            |     | 3         |
| 322 | Surface Modification of Carbonaceous Thin Films by Electropolymerization of Pyrrole and its Effects on Electrochemical Properties (1). Tanso, 2003, 2003, 217-220.                                                                                              | 0.1 | 3         |
| 323 | Charge Transfer Reactions in Lithium-ion Batteries. Hyomen Kagaku, 2006, 27, 609-612.                                                                                                                                                                           | 0.0 | 3         |
| 324 | TEM and Electron Tomography Imaging of Pt Particles Dispersed on Carbon Nanospheres. Journal of<br>Nano Research, 2010, 11, 119-124.                                                                                                                            | 0.8 | 3         |

| #   | Article                                                                                                                                                                                                                                       | IF             | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 325 | Investigation of the Surface Film Forming Process on Nongraphitizable Carbon Electrodes by In-situ<br>Atomic Force Microscopy. Electrochemistry, 2016, 84, 769-771.                                                                           | 0.6            | 3         |
| 326 | Sodium-ion Intercalation Behavior of Graphitized Carbon Nanospheres Covered with Basal Plane.<br>Chemistry Letters, 2019, 48, 799-801.                                                                                                        | 0.7            | 3         |
| 327 | Solvated Lithium Ion Intercalation Behavior of Graphitized Carbon Nanospheres. Electrochemistry, 2020, 88, 79-82.                                                                                                                             | 0.6            | 3         |
| 328 | <i>Operando</i> analysis of graphite intercalation compounds with fluoride-containing polyatomic<br>anions in aqueous solutions. Materials Advances, 2021, 2, 2310-2317.                                                                      | 2.6            | 3         |
| 329 | Mechanisms of and three-dimensional morphology changes in fluoride shuttle battery reactions of PbF <sub>2</sub> microparticles. Journal of Materials Chemistry A, 2021, 9, 22544-22554.                                                      | 5.2            | 3         |
| 330 | Molecular Structural Influence of Glymes on Co-Intercalation Behavior of Solvated Li <sup>+</sup><br>in Graphite Electrodes. Journal of the Electrochemical Society, 2021, 168, 060525.                                                       | 1.3            | 3         |
| 331 | Atomic-level nature of solid/liquid interface for energy conversion revealed by frequency modulation atomic force microscopy. Japanese Journal of Applied Physics, 2021, 60, SE0806.                                                          | 0.8            | 3         |
| 332 | In Situ Observation at the Surface of Zinc in Alkaline Solution under Pulsed Current by Holographic<br>Interferometry. Journal of the Electrochemical Society, 2021, 168, 080509.                                                             | 1.3            | 3         |
| 333 | Influence of conductive additives on the electrochemical compatibility of cupper fluoride cathode for FSB. Journal of Electroanalytical Chemistry, 2021, 900, 115744.                                                                         | 1.9            | 3         |
| 334 | Fluoride Ion Conductive Polymer Electrolytes for All-solid-state Fluoride Shuttle Batteries.<br>Electrochemistry, 2020, 88, 310-313.                                                                                                          | 0.6            | 3         |
| 335 | Operando Observations of Reversible α-BiF <sub>3</sub> Conversion in Liquid Electrolyte by<br>Synchrotron Radiation Diffraction and <sup>7</sup> Li Nuclear Magnetic Resonance. Journal of the<br>Electrochemical Society, 2020, 167, 120518. | 1.3            | 3         |
| 336 | LiNi <sub>0.5</sub> Mn <sub>1.5</sub> O <sub>4</sub> Cathode Materials<br>Co-Doped with La <sup>3+</sup> and S <sup>2â^'</sup> for Use in Lithium-Ion<br>Batteries. Electrochemistry, 2022, 90, 017010-017010.                                | 0.6            | 3         |
| 337 | Kinetics of Interfacial Lithium-ion Transfer between a Graphite Negative Electrode and a<br>Li <sub>2</sub> S-P <sub>2</sub> S <sub>5</sub> Glassy Solid Electrolyte.<br>Electrochemistry, 2022, 90, 037003-037003.                           | 0.6            | 3         |
| 338 | Preparation of stages 2–4 ternary AlCl3–FeCl3-graphite intercalation compounds. Journal of<br>Materials Research, 1995, 10, 1196-1199.                                                                                                        | 1.2            | 2         |
| 339 | Preparation of Alkali Metal-graphite Intercalation Compounds in the Solutions of Alkali Metals<br>Dissolved in Dimethoxymethane or Diethoxyethane. Tanso, 1998, 1998, 262-265.                                                                | 0.1            | 2         |
| 340 | Meniscus Formation and Hydrogen Oxidation on Partially Immersed Pt-Carbon Electrode.<br>Electrochemistry, 2007, 75, 248-257.                                                                                                                  | 0.6            | 2         |
| 341 | 1.ãfẽ,¹ãf^ãfªāfẽ,¦ãfã,ã,ªãf³é›»æ±â€"åඎ¾¡ã,ã,ªãf³ç§»å⊶åå;œç³»ã,'ä¸å;fã«â€". Electrochemistry, 2012, 80,                                                                                                                                        | <b>89.⊕</b> 2. | 2         |
| 342 | Influences of metal oxides on carbon corrosion under imposed electrochemical potential conditions.<br>Carbon, 2012, 50, 1644-1649.                                                                                                            | 5.4            | 2         |

Τακές η Αβε

| #   | Article                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Fabrication of Step-edge-decorated Graphite Electrodes with Platinum and Their Electrocatalytic Activities. Chemistry Letters, 2013, 42, 606-608.                                                                                                                                                   | 0.7 | 2         |
| 344 | Modification of the Solid Electrolyte Interphase by Chronoamperometric Pretreatment and Its Effect<br>on the Concentration Change of Electrolyte Salt in Lithium Ion Batteries Studied by In Situ<br>Microprobe Raman Spectroscopy. Journal of the Electrochemical Society, 2017, 164, A2355-A2359. | 1.3 | 2         |
| 345 | Influence of Concentrations of LiNO <sub>3</sub> Aqueous Electrolytes on Initial Electrochemical<br>Properties of LiNiO <sub>2</sub> Electrodes. Chemistry Letters, 2021, 50, 1071-1074.                                                                                                            | 0.7 | 2         |
| 346 | Influence of Chemical Operation on the Electrocatalytic Activity of<br>Ba <sub>0.5</sub> Sr <sub>0.5</sub> Co <sub>0.8</sub> Fe <sub>0.2</sub> O <sub>3â^´l´ </sub> for the Oxygen<br>Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 010518.                                | 1.3 | 2         |
| 347 | Impact of Hydrogen Peroxide on Carbon Corrosion in Aqueous KOH Solution. Electrochemistry, 2022,<br>90, 017011-017011.                                                                                                                                                                              | 0.6 | 2         |
| 348 | Effects of Solvation Structures on the Co-intercalation Suppression Ability of the Solid Electrolyte<br>Interphase Formed on Graphite Electrodes. Chemistry Letters, 2022, 51, 618-621.                                                                                                             | 0.7 | 2         |
| 349 | ãfªãfē,¦ãfã,ªãf³é›»æ±è²æ¥µææ–™ãëã⊷ã∮ã®ãfŠãfŽã,«ãf¼ãfœãf³. Electrochemistry, 2008, 76, 354-357.                                                                                                                                                                                                      | 0.6 | 1         |
| 350 | Local Current Distributions on Electrodes Covered with Anion-exchange Films. Chemistry Letters, 2018, 47, 171-174.                                                                                                                                                                                  | 0.7 | 1         |
| 351 | Chargeâ€Transfer Kinetics of the Solid–Electrolyte Interphase on Li 4 Ti 5 O 12 Thinâ€Film Electrodes.<br>ChemSusChem, 2020, 13, 3944-3944.                                                                                                                                                         | 3.6 | 1         |
| 352 | Complementary Actions of Tungsten Oxides and Carbon to Catalyze the Redox Reaction of VO2+/VO2+<br>in Vanadium Redox Flow Batteries. ChemElectroChem, 2021, 8, 3695.                                                                                                                                | 1.7 | 1         |
| 353 | High fluoride-ion conductivity and fluoride-ion conductorâ^'insulator transition in fluorinated hexagonal boron nitride. Materials Today Physics, 2021, 21, 100523.                                                                                                                                 | 2.9 | 1         |
| 354 | Nano-Aspects of Carbon Negative Electrodes for Li Ion Batteries. Nanostructure Science and Technology, 2014, , 31-40.                                                                                                                                                                               | 0.1 | 1         |
| 355 | Synthesis and Characterization of Acceptor Type Graphite Bi-Intercalation Compounds. Tanso, 2000, 2000, 414-419.                                                                                                                                                                                    | 0.1 | 1         |
| 356 | Morphology of nano-carbon materials and their electrochemical properties as the negative electrodes in lithium-ion batteries. Tanso, 2012, 2012, 274-279.                                                                                                                                           | 0.1 | 1         |
| 357 | Black Phosphorus-Graphite Material Composites with a Low Activation Energy of Interfacial Conductivity. Electrochemistry, 2022, 90, .                                                                                                                                                               | 0.6 | 1         |
| 358 | Reciprocal Sum Expression for Steady-state Kinetics. —Enzyme Reactions and Voltammetry—.<br>Electrochemistry, 2022, , .                                                                                                                                                                             | 0.6 | 1         |
| 359 | Raman Scattering Study of FeCl3 Based Graphite Bi-Intercalation Compounds. Molecular Crystals and<br>Liquid Crystals, 2000, 340, 173-178.                                                                                                                                                           | 0.3 | 0         |
| 360 | High-pressure synthesis of a novel form of endohedral Li diamond from Li graphite intercalation compound. Journal of Physics and Chemistry of Solids, 2004, 65, 933-938.                                                                                                                            | 1.9 | 0         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | Lithium-ion-conductive polymer electrolytes exhibit a high lithium-ion transference number with the incorporation of fluorine atoms. , 2005, , 335-347.                                                                                                                                                                                                      |      | 0         |
| 362 | Preparation of Nano-sized Negative Electrode Materials by a Spray Pyrolysis Method. ECS Meeting Abstracts, 2005, , .                                                                                                                                                                                                                                         | 0.0  | 0         |
| 363 | Preparation of carbonaceous thin films by plasma-assisted chemical vapor deposition and their application to energy devices. Tanso, 2007, 2007, 352-361.                                                                                                                                                                                                     | 0.1  | Ο         |
| 364 | Improvement of Electrochemical Stability of Carbonaceous Materials for Fuel Cells by Using Metal<br>Oxide Deposition. ECS Meeting Abstracts, 2009, , .                                                                                                                                                                                                       | 0.0  | 0         |
| 365 | (Invited) Electrodeposition in Microporous Silicon from the Viewpoint of Hydration Property: Effect of Coexisting Ions in Zinc Electrodeposition. ECS Transactions, 2015, 69, 15-21.                                                                                                                                                                         | 0.3  | 0         |
| 366 | Liâ€Ion Batteries: Cathodeâ€Electrolyteâ€Interphase Film Formation on a LiNiO <sub>2</sub> Surface in<br>Conventional Aqueous Electrolytes: Simple Method to Improve the Electrochemical Performance of<br>LiNiO <sub>2</sub> Electrodes for Use in Aqueous Liâ€Ion Batteries (Adv. Energy Mater. 25/2021).<br>Advanced Energy Materials, 2021, 11, 2170094. | 10.2 | 0         |
| 367 | Hysteresis of the charge transfer resistance between the charge and discharge processes obtained from electrochemical impedance measurements using a thin-film cathode for a lithium-ion cell. Journal of Electroanalytical Chemistry, 2021, 899, 115675.                                                                                                    | 1.9  | 0         |
| 368 | Preparation of carbonaceous thin films by plasma-assisted chemical vapor deposition using active fluorine atoms. Tanso, 2007, 2007, 293-298.                                                                                                                                                                                                                 | 0.1  | 0         |
| 369 | Electrochemical properties of carbon nanofibers as the negative electrode in lithium-ion batteries.<br>Tanso, 2013, 2013, 52-56.                                                                                                                                                                                                                             | 0.1  | 0         |
| 370 | Thermodynamic Properties of FeCl3-graphite Intercalation Compounds by Mass-spectrometric Knudsen<br>Effusion Method. Tanso, 1996, 1996, 266-271.                                                                                                                                                                                                             | 0.1  | 0         |
| 371 | Surface-Modified Li4Ti5O12 in Highly Concentrated Aqueous Solutions for Use in Aqueous<br>Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 120512.                                                                                                                                                                         | 1.3  | 0         |
| 372 | Crystal structure, ionic conductivity and lithium-ion diffusion pathway in a La–Li–Co–O system.<br>Journal of the Ceramic Society of Japan, 2020, 128, 453-456.                                                                                                                                                                                              | 0.5  | 0         |
| 373 | Interfacial lithium-ion transfer between the graphite negative electrode and the electrolyte solution.<br>Tanso, 2020, 2020, 9-14.                                                                                                                                                                                                                           | 0.1  | Ο         |
| 374 | Electrochemical Performance of Nanorod-like (La, Zr) Co-Doped Li-rich<br>Li <sub>1.2</sub> Ni <sub>0.2</sub> Mn <sub>0.6</sub> O <sub>2</sub><br>Cathodes for Use in Lithium-Ion Batteries. Electrochemistry, 2022, 90, 017008-017008.                                                                                                                       | 0.6  | 0         |
| 375 | Study on the Analysis of the Current-potential Curve of RDE in Electrocatalytic Reactions. Review of Polarography, 2020, 66, 77-84.                                                                                                                                                                                                                          | 0.0  | 0         |
| 376 | Study of Behavior of Supporting Electrolyte Ion of Fluoride Shuttle Battery Using Anomalous Xâ€Ray<br>Scattering. Advanced Energy and Sustainability Research, 0, , 2200020.                                                                                                                                                                                 | 2.8  | 0         |