
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3121149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation. Advanced Materials, 2008, 20, 4490-4493.	11.1	1,629
2	Hierarchical "nanoroll―like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 2019, 241, 89-94.	10.8	214
3	Magnetic CoFe ₂ O ₄ –Graphene Hybrids: Facile Synthesis, Characterization, and Catalytic Properties. Industrial & Engineering Chemistry Research, 2012, 51, 6044-6051.	1.8	205
4	Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. Journal of Materials Chemistry A, 2013, 1, 5854.	5.2	187
5	Advanced Grapheneâ€Based Binderâ€Free Electrodes for Highâ€Performance Energy Storage. Advanced Materials, 2015, 27, 5264-5279.	11.1	153
6	Physical and chemical activation of reduced graphene oxide for enhanced adsorption and catalytic oxidation. Nanoscale, 2014, 6, 766-771.	2.8	143
7	<i>N-</i> Butyllithium-Treated Ti ₃ C ₂ T _{<i>x</i>} MXene with Excellent Pseudocapacitor Performance. ACS Nano, 2019, 13, 9449-9456.	7.3	132
8	Heterostructure engineering of Co-doped MoS ₂ coupled with Mo ₂ CT _x MXene for enhanced hydrogen evolution in alkaline media. Nanoscale, 2019, 11, 10992-11000.	2.8	127
9	Polyaniline Derived Nâ€Doped Carbon oated Cobalt Phosphide Nanoparticles Deposited on Nâ€Doped Graphene as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Small, 2018, 14, 1702895.	5.2	122
10	Boosting aqueous zinc-ion storage in MoS2 via controllable phase. Chemical Engineering Journal, 2020, 389, 124405.	6.6	122
11	Facile Synthesis of Atomic Feâ€Nâ€C Materials and Dual Roles Investigation of Feâ€N ₄ Sites in Fentonâ€Like Reactions. Advanced Science, 2021, 8, e2101824.	5.6	118
12	High Yield Exfoliation of WS ₂ Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS ₂ /CdS Nanorod Composites. ACS Applied Materials & Interfaces, 2018, 10, 2810-2818.	4.0	112
13	MoS2/reduced graphene oxide hybrid with CdS nanoparticles as a visible light-driven photocatalyst for the reduction of 4-nitrophenol. Journal of Hazardous Materials, 2016, 309, 173-179.	6.5	106
14	Roles of Two-Dimensional Transition Metal Dichalcogenides as Cocatalysts in Photocatalytic Hydrogen Evolution and Environmental Remediation. Industrial & Engineering Chemistry Research, 2017, 56, 4611-4626.	1.8	103
15	1T-Phase MoS ₂ Nanosheets on TiO ₂ Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance. ACS Sustainable Chemistry and Engineering, 2017, 5, 5175-5182.	3.2	98
16	Ultra-small Mo ₂ C nanodots encapsulated in nitrogen-doped porous carbon for pH-universal hydrogen evolution: insights into the synergistic enhancement of HER activity by nitrogen doping and structural defects. Journal of Materials Chemistry A, 2019, 7, 4734-4743.	5.2	90
17	Modulating the Electronic Structure of Singleâ€Atom Catalysts on 2D Nanomaterials for Enhanced Electrocatalytic Performance. Small Methods, 2019, 3, 1800438.	4.6	88
18	Controllable Synthesis of Ruthenium Phosphides (RuP and RuP ₂) for pH-Universal Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 6388-6394.	3.2	83

#	Article	IF	CITATIONS
19	A novel H2O2 electrochemical sensor based on NiCo2S4 functionalized reduced graphene oxide. Journal of Alloys and Compounds, 2019, 784, 827-833.	2.8	82
20	Preferential Growth of the Cobalt (200) Facet in Co@N–C for Enhanced Performance in a Fenton-like Reaction. ACS Catalysis, 2021, 11, 5532-5543.	5.5	82
21	Fine-Tuning Radical/Nonradical Pathways on Graphene by Porous Engineering and Doping Strategies. ACS Catalysis, 2021, 11, 4848-4861.	5.5	82
22	Rapid exfoliation of layered covalent triazine-based frameworks into N-doped quantum dots for the selective detection of Hg ²⁺ ions. Journal of Materials Chemistry A, 2017, 5, 9272-9278.	5.2	76
23	VS2 nanosheets vertically grown on graphene as high-performance cathodes for aqueous zinc-ion batteries. Journal of Power Sources, 2020, 477, 228652.	4.0	74
24	Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: a green and high yield route to high-quality graphene preparation. Journal of Materials Chemistry A, 2017, 5, 5880-5885.	5.2	73
25	Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries. Chemical Engineering Journal, 2019, 378, 122212.	6.6	71
26	Hierarchical photocatalyst of In2S3 on exfoliated MoS2 nanosheets for enhanced visible-light-driven Aza-Henry reaction. Applied Catalysis B: Environmental, 2018, 237, 288-294.	10.8	70
27	Reversible intercalation and exfoliation of layered covalent triazine frameworks for enhanced lithium ion storage. Chemical Communications, 2019, 55, 1434-1437.	2.2	70
28	A near-infrared light-mediated antimicrobial based on Ag/Ti ₃ C ₂ T _x for effective synergetic antibacterial applications. Nanoscale, 2020, 12, 19129-19141.	2.8	69
29	Synthesis of nitrogen and sulfur co-doped reduced graphene oxide as efficient metal-free cocatalyst for the photo-activity enhancement of CdS. Applied Catalysis B: Environmental, 2018, 236, 212-221.	10.8	68
30	Hierarchical Cobalt Borate/MXenes Hybrid with Extraordinary Electrocatalytic Performance in Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 3758-3765.	3.6	66
31	Ti ₂ C ₃ T _x nanosheets as photothermal agents for near-infrared responsive hydrogels. Nanoscale, 2018, 10, 15387-15392.	2.8	66
32	Fe containing template derived atomic Fe–N–C to boost Fenton-like reaction and charge migration analysis on highly active Fe–N ₄ sites. Journal of Materials Chemistry A, 2021, 9, 14793-14805.	5.2	66
33	Synergy of nitrogen doping and structural defects on hierarchically porous carbons toward catalytic oxidation via a non-radical pathway. Carbon, 2019, 155, 268-278.	5.4	65
34	2D MXene-Based Materials for Electrocatalysis. Transactions of Tianjin University, 2020, 26, 149-171.	3.3	65
35	Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting. Carbon, 2019, 148, 540-549.	5.4	61
36	Few-Layered Trigonal WS ₂ Nanosheet-Coated Graphite Foam as an Efficient Free-Standing Electrode for a Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 30591-30598.	4.0	56

#	Article	IF	CITATIONS
37	High-performance porous graphene from synergetic nitrogen doping and physical activation for advanced nonradical oxidation. Journal of Hazardous Materials, 2020, 381, 121010.	6.5	54
38	A VS ₂ @N-doped carbon hybrid with strong interfacial interaction for high-performance rechargeable aqueous Zn-ion batteries. Journal of Materials Chemistry C, O, , .	2.7	54
39	Utilization of MoS ₂ Nanosheets To Enhance the Photocatalytic Activity of ZnO for the Aerobic Oxidation of Benzyl Halides under Visible Light. Industrial & Engineering Chemistry Research, 2016, 55, 8726-8732.	1.8	53
40	Sorption Behavior of Bisphenol A and Triclosan by Graphene: Comparison with Activated Carbon. ACS Omega, 2017, 2, 5378-5384.	1.6	53
41	N-doped carbon dots decorated 3D g-C3N4 for visible-light driven peroxydisulfate activation: Insights of non-radical route induced by Na+ doping. Applied Catalysis B: Environmental, 2022, 310, 121304.	10.8	53
42	Utilization of MoS2 and graphene to enhance the photocatalytic activity of Cu2O for oxidative C C bond formation. Applied Catalysis B: Environmental, 2017, 213, 1-8.	10.8	52
43	The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in Photocatalytic Energy Generation and Pollutants Degradation. Frontiers in Chemistry, 2017, 5, 84.	1.8	52
44	Facile Synthesis of High-Performance Nitrogen-Doped Hierarchically Porous Carbon for Catalytic Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 4236-4243.	3.2	52
45	In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries. Chemical Engineering Journal, 2022, 427, 131792.	6.6	52
46	Photothermal enhanced enzymatic activity of lipase covalently immobilized on functionalized Ti3C2TX nanosheets. Chemical Engineering Journal, 2019, 378, 122205.	6.6	51
47	CoP nanoparticles combined with WS2 nanosheets as efficient electrocatalytic hydrogen evolution reaction catalyst. International Journal of Hydrogen Energy, 2017, 42, 3947-3954.	3.8	50
48	3D self-supported Ni(PO ₃) ₂ –MoO ₃ nanorods anchored on nickel foam for highly efficient overall water splitting. Nanoscale, 2018, 10, 22173-22179.	2.8	50
49	(0D/3D) MoS2 on porous graphene as catalysts for enhanced electrochemical hydrogen evolution. Carbon, 2017, 121, 163-169.	5.4	49
50	Metallic 1T phase MoS ₂ nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods. RSC Advances, 2016, 6, 74394-74399.	1.7	48
51	A highly sensitive nonenzymatic H2O2 sensor based on platinum, ZnFe2O4 functionalized reduced graphene oxide. Journal of Alloys and Compounds, 2018, 738, 317-322.	2.8	46
52	Chemically-confined mesoporous γ-Fe2O3 nanospheres with Ti3C2Tx MXene via alkali treatment for enhanced lithium storage. Journal of Power Sources, 2021, 495, 229758.	4.0	46
53	Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst. Nano Research, 2013, 6, 286-292.	5.8	45
54	Rational Design of Fe/N/Sâ€Doped Nanoporous Carbon Catalysts from Covalent Triazine Frameworks for Efficient Oxygen Reduction. ChemSusChem, 2018, 11, 2402-2409.	3.6	45

#	Article	IF	CITATIONS
55	Cobalt nanoparticles embedded in N-doped carbon on carbon cloth as free-standing electrodes for electrochemically-assisted catalytic oxidation of phenol and overall water splitting. Carbon, 2019, 155, 287-297.	5.4	45
56	NbSe ₂ Nanosheet Supported PbBiO ₂ Br as a High Performance Photocatalyst for the Visible Light-driven Asymmetric Alkylation of Aldehyde. ACS Sustainable Chemistry and Engineering, 2015, 3, 1017-1022.	3.2	44
57	Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications. Journal of Materials Chemistry A, 2019, 7, 23577-23603.	5.2	43
58	Surface Phase Engineering Modulated Ironâ€Nickel Nitrides/Alloy Nanospheres with Tailored dâ€Band Center for Efficient Oxygen Evolution Reaction. Small, 2022, 18, e2105696.	5.2	41
59	Chemoselective hydrodeoxygenation of palmitic acid to diesel-like hydrocarbons over Ni/MoO2@Mo2CTx catalyst with extraordinary synergic effect. Chemical Engineering Journal, 2020, 391, 123472.	6.6	38
60	Exfoliated MoS2 with porous graphene nanosheets for enhanced electrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 13946-13952.	3.8	37
61	Photo-accelerated Co ³⁺ /Co ²⁺ transformation on cobalt and phosphorus co-doped g-C ₃ N ₄ for Fenton-like reaction. Journal of Materials Chemistry A, 2021, 9, 22399-22409.	5.2	37
62	Microwave-assisted 1T to 2H phase reversion of MoS ₂ in solution: a fast route to processable dispersions of 2H-MoS ₂ nanosheets and nanocomposites. Nanotechnology, 2016, 27, 385604.	1.3	36
63	Nitrogen-doped graphene quantum dots decorated graphite foam as ultra-high active free-standing electrode for electrochemical hydrogen evolution and phenol degradation. Chemical Engineering Science, 2019, 194, 54-57.	1.9	36
64	Easily Regenerated CuO/γ-Al ₂ O ₃ for Persulfate-Based Catalytic Oxidation: Insights into the Deactivation and Regeneration Mechanism. ACS Applied Materials & Interfaces, 2021, 13, 2630-2641.	4.0	36
65	Bifunctional Graphene-Based Metal-Free Catalysts for Oxidative Coupling of Amines. ACS Applied Materials & Interfaces, 2019, 11, 31844-31850.	4.0	35
66	Preparation of Hollow Cobalt–Iron Phosphides Nanospheres by Controllable Atom Migration for Enhanced Water Oxidation and Splitting. Small, 2021, 17, e2007858.	5.2	35
67	Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2022, 623, 277-284.	5.0	34
68	2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation. Nanomaterials, 2017, 7, 62.	1.9	33
69	Band-gap engineering of layered covalent organic frameworks via controllable exfoliation for enhanced visible-light-driven hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 2689-2698.	3.8	32
70	Vertically aligned 1ÂT phase MoS2 nanosheet array for high-performance rechargeable aqueous Zn-ion batteries. Chemical Engineering Journal, 2022, 428, 130981.	6.6	32
71	Constructing titanium carbide MXene/reduced graphene oxide superlattice heterostructure via electrostatic self-assembly for high-performance capacitive deionization. Journal of Colloid and Interface Science, 2022, 624, 233-241.	5.0	32
72	Single-atomic iron-nitrogen 2D MOF-originated hierarchically porous carbon catalysts for enhanced oxygen reduction reaction. Chemical Engineering Journal, 2022, 441, 135849.	6.6	31

#	Article	IF	CITATIONS
73	Improving the performance of a titanium carbide MXene in supercapacitors by partial oxidation treatment. Inorganic Chemistry Frontiers, 2020, 7, 1205-1211.	3.0	30
74	Plasma-assisted synthesis of three-dimensional hierarchical NiFeOx/NiFeP electrocatalyst for highly enhanced water oxidation in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 26118-26127.	3.8	29
75	Fabrication of a novel ZnO–CoO/rGO nanocomposite for nonenzymatic detection of glucose and hydrogen peroxide. Ceramics International, 2018, 44, 5250-5256.	2.3	28
76	Graphene supported Au-Pd-Fe3O4 alloy trimetallic nanoparticles with peroxidase-like activities as mimic enzyme. Catalysis Communications, 2017, 89, 148-151.	1.6	27
77	Increasing the heteroatoms doping percentages of graphene by porous engineering for enhanced electrocatalytic activities. Journal of Colloid and Interface Science, 2020, 577, 101-108.	5.0	27
78	Synthesis of nitrogen and sulfur doped graphene on graphite foam for electro-catalytic phenol degradation and water splitting. Journal of Colloid and Interface Science, 2021, 583, 139-148.	5.0	26
79	Preparation of ultrathin molybdenum disulfide dispersed on graphene via cobalt doping: A bifunctional catalyst for hydrogen and oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 9583-9591.	3.8	25
80	MXene derivatives: synthesis and applications in energy convention and storage. RSC Advances, 2021, 11, 16065-16082.	1.7	25
81	Near-Infrared Responsive MoS ₂ /Poly(<i>N</i> -isopropylacrylamide) Hydrogels for Remote Light-Controlled Microvalves. Industrial & Engineering Chemistry Research, 2016, 55, 4526-4531.	1.8	24
82	Fabrication of a Cu ₂ O/g ₃ N ₄ /WS ₂ Triple‣ayer Photocathode for Photoelectrochemical Hydrogen Evolution. ChemElectroChem, 2017, 4, 1498-1502.	1.7	24
83	CoP Nanoparticles Combined with WSe ₂ Nanosheets: An Efficient Hybrid Catalyst for Electrocatalytic Hydrogen Evolution Reaction. Industrial & Engineering Chemistry Research, 2018, 57, 483-489.	1.8	24
84	Synthesis of porous nitrogen doped carbon cage from carbide for catalytic oxidation. Carbon, 2020, 163, 43-55.	5.4	24
85	Synergistic activation of peroxymonosulfate between Co and MnO for bisphenol A degradation with enhanced activity and stability. Journal of Colloid and Interface Science, 2022, 623, 775-786.	5.0	24
86	Synthesis of Palladium, ZnFe ₂ O ₄ Functionalized Reduced Graphene Oxide Nanocomposites as H ₂ O ₂ Detector. Industrial & Engineering Chemistry Research, 2017, 56, 4327-4333.	1.8	23
87	N-doped hierarchical porous metal-free catalysts derived from covalent triazine frameworks for the efficient oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 6606-6612.	2.1	23
88	Thermal removal of partial nitrogen atoms in N-doped graphene for enhanced catalytic oxidation. Journal of Colloid and Interface Science, 2021, 585, 640-648.	5.0	23
89	Two-dimensional hierarchical Mn ₂ O ₃ @graphene as a high rate and ultrastable cathode for aqueous zinc-ion batteries. Journal of Materials Chemistry C, 2021, 9, 1326-1332.	2.7	23
90	Partially Etched Ti ₃ AlC ₂ as a Promising Highâ€Capacity Lithiumâ€lon Battery Anode. ChemSusChem, 2018, 11, 2677-2680.	3.6	22

#	Article	IF	CITATIONS
91	Synergistic Effect of N-Doped sp ² Carbon and Porous Structure in Graphene Gels toward Selective Oxidation of C–H Bond. ACS Applied Materials & Interfaces, 2021, 13, 13087-13096.	4.0	22
92	Decorated nickel phosphide nanoparticles with nitrogen and phosphorus co-doped porous carbon for enhanced electrochemical water splitting. Journal of Colloid and Interface Science, 2020, 567, 393-401.	5.0	21
93	Understanding of the electrochemical behaviors of aqueous zinc–manganese batteries: Reaction processes and failure mechanisms. Green Energy and Environment, 2022, 7, 858-899.	4.7	20
94	Multilevel N-doped carbon nanotube/graphene supported cobalt phosphide nanoparticles for electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 30053-30061.	3.8	19
95	Transition Metal/Metal Oxide Interface (Ni–Mo–O/Ni ₄ Mo) Stabilized on N-Doped Carbon Paper for Enhanced Hydrogen Evolution Reaction in Alkaline Conditions. Industrial & Engineering Chemistry Research, 2021, 60, 5145-5150.	1.8	19
96	P-Doped MoSe ₂ /MoS ₂ Heterojunctions Anchored on N-CNTs/Carbon Cloth with Abundant Interfaces and Defects for Effective Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2021, 4, 2408-2418.	2.5	18
97	Preparation of Cuprous Oxide Mesoporous Spheres with Different Pore Sizes for Non-Enzymatic Glucose Detection. Nanomaterials, 2018, 8, 73.	1.9	17
98	Bimetallic Iron–Cobalt Catalysts and Their Applications in Energy-Related Electrochemical Reactions. Catalysts, 2019, 9, 762.	1.6	16
99	A palladium doped 1T-phase molybdenum disulfide–black phosphorene two-dimensional van der Waals heterostructure for visible-light enhanced electrocatalytic hydrogen evolution. Nanoscale, 2021, 13, 5892-5900.	2.8	16
100	Bamboo-like nitrogen-doped carbon nanotubes on iron mesh for electrochemically-assisted catalytic oxidation. Journal of Hazardous Materials, 2021, 408, 124899.	6.5	16
101	Synthesis of MoS ₂ /graphene hybrid supported Au and Ag nanoparticles with multi-functional catalytic properties. Nanotechnology, 2017, 28, 205603.	1.3	15
102	Defected graphene as effective co-catalyst of CdS for enhanced photocatalytic activities. Environmental Science and Pollution Research, 2020, 27, 26810-26816.	2.7	15
103	Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion. Green Energy and Environment, 2023, 8, 360-382.	4.7	15
104	Synthesis of Co-NC catalysts from spent lithium-ion batteries for fenton-like reaction: Generation of singlet oxygen with â^1/4100% selectivity. Carbon, 2022, 197, 76-86.	5.4	15
105	Pressure and solvent induced low-temperature synthesis of monodisperse superparamagnetic nanocrystals: The case of Fe3O4 in alkanols. Applied Surface Science, 2008, 254, 4970-4979.	3.1	14
106	Dual-Functionalized Covalent Triazine Framework Nanosheets as Hierarchical Nonviral Vectors for Intracellular Gene Delivery. ACS Applied Nano Materials, 2021, 4, 4948-4955.	2.4	14
107	High-yield exfoliation of MoS2 (WS2) monolayers towards efficient photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 431, 133286.	6.6	14
108	Remove the –F Terminal Groups on Ti3C2Tx by Reaction with Sodium Metal to Enhance Pseudocapacitance. Energy Storage Materials, 2022, 50, 802-809.	9.5	14

#	Article	IF	CITATIONS
109	Fluorine-induced porous carbon nanosheets with abundant edge-defects for high-performance capacitive deionization. Desalination, 2022, 538, 115919.	4.0	14
110	Gold nanoparticles supported on layered TiO ₂ –RGO hybrid as an enhanced and recyclable catalyst for microwave-assisted hydration reaction. RSC Advances, 2016, 6, 76151-76157.	1.7	13
111	Covalent Triazine Framework Anchored with Co ₃ O ₄ Nanoparticles for Efficient Oxygen Reduction. ChemElectroChem, 2018, 5, 717-721.	1.7	13
112	A general strategy for in-situ fabrication of uniform carbon nanotubes on three-dimensional carbon architectures for electrochemical application. Applied Surface Science, 2019, 496, 143704.	3.1	13
113	TiO2 nanorod arrays decorated with exfoliated WS2 nanosheets for enhanced photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2019, 545, 282-288.	5.0	13
114	Quasi zero-dimensional MoS2 quantum dots decorated 2D Ti3C2Tx MXene as advanced electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 10583-10593.	3.8	13
115	Intercalated Graphite between Ni Foam and Ni ₃ S ₂ Nanocrystals for the Activity Promotion in Overall Water Splitting. Energy Technology, 2019, 7, 1900063.	1.8	12
116	Hierarchical Amorphous Carbon-Coated Co/Co ₉ S ₈ Nanoparticles on MoS ₂ toward Synergetic Electrocatalytic Water Splitting. Industrial & Engineering Chemistry Research, 2019, 58, 23093-23098.	1.8	12
117	Magnetic Au-Ag-Î ³ -Fe2O3/rGO Nanocomposites as an Efficient Catalyst for the Reduction of 4-Nitrophenol. Nanomaterials, 2018, 8, 877.	1.9	11
118	Ni modified ultrafine MoxC (xÂ=Â1, 2) wrapped by nitrogen-doped carbon for efficient hydrogen evolution reaction in acid and alkaline electrolytes. International Journal of Hydrogen Energy, 2020, 45, 28285-28293.	3.8	11
119	Interface Engineering to Improve the Rate Performance and Stability of the Mn-Cathode Electrode for Aqueous Zinc-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 24386-24395.	4.0	11
120	Porous structure engineering of N-doped carbons for enhanced mass transfer towards High-Performance supercapacitors and Li-Ion batteries. Journal of Colloid and Interface Science, 2022, 624, 51-59.	5.0	11
121	Selective reduction of 4,4′-dinitrostilbene-2,2′-disulfonic acid catalyzed by supported nano-sized gold with sodium formate as hydrogen source. Catalysis Communications, 2011, 12, 568-572.	1.6	10
122	Ultra-small RuPx nanoparticles on graphene supported schiff-based networks for all pH hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 5717-5724.	3.8	10
123	Grain-boundary-rich layered double hydroxides <i>via</i> a boron-assisted strategy for the oxygen evolution reaction. Chemical Communications, 2022, 58, 5646-5649.	2.2	10
124	Use of 4,4′-Dinitrostilbene-2,2′-Disulfonic Acid Wastewater As a Raw Material for Paramycin Production. Environmental Science & Technology, 2010, 44, 9157-9162.	4.6	9
125	Decoration of Cu ₂ O photocathode with protective TiO ₂ and active WS ₂ layers for enhanced photoelectrochemical hydrogen evolution. Nanotechnology, 2018, 29, 505603.	1.3	9
126	Cobalt phosphide nanoparticles anchored on molybdenum selenide nanosheets as high-performance electrocatalysts for water reduction. International Journal of Hydrogen Energy, 2018, 43, 20346-20353.	3.8	9

#	Article	IF	CITATIONS
127	Reconstruction of bimetal CoFe _{0.13} -MOF to enhance the catalytic performance in the oxygen evolution reaction. Chemical Communications, 2022, 58, 1115-1118.	2.2	9
128	Boosting the Zn-ion energy storage capability of graphene sandwiched nanoporous VO _{<i>x</i>} derived from MXene. Nanoscale, 2022, 14, 8640-8648.	2.8	9
129	Thermal activation of persulfates for organic wastewater purification: Heating modes, mechanism and influencing factors. Chemical Engineering Journal, 2022, 450, 137976.	6.6	9
130	Sulfur-Rich Molybdenum Sulfide Grown on Porous N-Doped Graphene for Efficient Hydrogen Evolution. Industrial & Engineering Chemistry Research, 2020, 59, 12862-12869.	1.8	8
131	Synthesis of nitrogen and sulfur Co-doped carbon with special hollow sphere structure for enhanced catalytic oxidation. Separation and Purification Technology, 2021, 278, 119522.	3.9	8
132	Synthesis of nearly monodisperse nanoparticles in alcohol: A pressure and solvent-induced low-temperature strategy. Applied Surface Science, 2009, 255, 7021-7027.	3.1	7
133	Promotion of the performance of nitrogen-doped graphene by secondary heteroatoms doping in energy transformation and storage. Ionics, 2019, 25, 3499-3522.	1.2	7
134	Topochemical synthesis of low-dimensional nanomaterials. Nanoscale, 2020, 12, 21971-21987.	2.8	7
135	Bimetallic ZIF-Derived Co/N-Codoped Porous Carbon Supported Ruthenium Catalysts for Highly Efficient Hydrogen Evolution Reaction. Nanomaterials, 2021, 11, 1228.	1.9	7
136	Facile synthesis of iron oxide supported on porous nitrogen doped carbon for catalytic oxidation. Science of the Total Environment, 2021, 785, 147296.	3.9	7
137	Nitrogenâ^ carbon materials base on pyrolytic graphene hydrogel for oxygen reduction. Journal of Colloid and Interface Science, 2021, 602, 274-281.	5.0	7
138	Surfactant-Free Synthesis of Ultrafine Pt Nanoparticles on MoS ₂ Nanosheets as Bifunctional Catalysts for the Hydrodeoxygenation of Bio-Oil. Langmuir, 2020, 36, 14710-14716.	1.6	7
139	Coupling LaNiO3 Nanorods with FeOOH Nanosheets for Oxygen Evolution Reaction. Catalysts, 2022, 12, 594.	1.6	7
140	Capillarity-induced disassembly of virions in carbon nanotubes. Nanotechnology, 2008, 19, 165702.	1.3	6
141	Supported nano-sized gold catalysts for selective reduction of 4,4?-dinitrostilbene-2,2?-disulfonic acid using different reductants. Dyes and Pigments, 2012, 95, 215-220.	2.0	6
142	Protective Strategy to Boost the Stability of Aminated Graphene in Fenton-like Reactions. Environmental Science & Technology, 2021, 55, 14828-14835.	4.6	6
143	Silicene/poly(N-isopropylacrylamide) smart hydrogels as remote light-controlled switches. Journal of Colloid and Interface Science, 2022, 621, 205-212.	5.0	6
144	A novel method for the recovery of 4,4′-dinitrostilbene-2,2′disulfonic acid from the wastewater obtained from 4,4′-diaminostilbene-2,2′-disulfonic acid production. Dyes and Pigments, 2010, 84, 218-222.	2.0	5

#	Article	IF	CITATIONS
145	Controllable Preparation of Ultrathin Sandwich-Like Membrane with Porous Organic Framework and Graphene Oxide for Molecular Filtration. Scientific Reports, 2015, 5, 14961.	1.6	5
146	Solubilities of Amino and Nitro Substituted Stilbene Sulfonic Acids: Investigations and Applications. Journal of Chemical & Engineering Data, 2011, 56, 2700-2705.	1.0	2
147	Nitrogen-doped 3D hollow carbon spheres for efficient selective oxidation of C–H bonds under mild conditions. New Journal of Chemistry, 2022, 46, 9727-9734.	1.4	2
148	Solubilities of Disodium-4-nitro-2-sulfobenzoate and 4-Amino-2-sulfo-benzoic Acid in Sulfuric Acid Aqueous Solutions: Investigations and Applications. Journal of Chemical Engineering of Japan, 2018, 51, 16-20.	0.3	0