Nicolette N Houreld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3121147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on nanoparticle based treatment for wound healing. Journal of Drug Delivery Science and Technology, 2018, 44, 421-430.	1.4	254
2	The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 368-374.	1.7	251
3	Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. International Journal of Biological Macromolecules, 2018, 115, 165-175.	3.6	224
4	Low Level Laser Therapy (LLLT) as an Effective Therapeutic Modality for Delayed Wound Healing. Annals of the New York Academy of Sciences, 2005, 1056, 486-493.	1.8	171
5	The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation. Journal of Diabetes Research, 2016, 2016, 1-9.	1.0	132
6	Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine and Growth Factor Reviews, 2019, 50, 52-59.	3.2	104
7	Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. International Journal of Molecular Sciences, 2022, 23, 7273.	1.8	93
8	Therapeutic Potential and Recent Advances of Curcumin in the Treatment of Aging-Associated Diseases. Molecules, 2018, 23, 835.	1.7	76
9	Shedding Light on a New Treatment for Diabetic Wound Healing: A Review on Phototherapy. Scientific World Journal, The, 2014, 2014, 1-13.	0.8	75
10	In Vitro Exposure of Wounded Diabetic Fibroblast Cells to a Helium-Neon Laser at 5 and 16 J/cm2. Photomedicine and Laser Surgery, 2007, 25, 78-84.	2.1	73
11	Collagen Production in Diabetic Wounded Fibroblasts in Response to Low-Intensity Laser Irradiation at 660 nm. Diabetes Technology and Therapeutics, 2012, 14, 1110-1117.	2.4	70
12	Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength-dependent manner. Lasers in Medical Science, 2007, 23, 11-18.	1.0	68
13	Irradiation at 830 nm stimulates nitric oxide production and inhibits proâ€inflammatory cytokines in diabetic wounded fibroblast cells. Lasers in Surgery and Medicine, 2010, 42, 494-502.	1.1	68
14	Influence of Low Intensity Laser Irradiation on Isolated Human Adipose Derived Stem Cells Over 72 Hours and Their Differentiation Potential into Smooth Muscle Cells Using Retinoic Acid. Stem Cell Reviews and Reports, 2011, 7, 869-882.	5.6	68
15	Low-Intensity Laser Irradiation at 660 nm Stimulates Transcription of Genes Involved in the Electron Transport Chain. Photomedicine and Laser Surgery, 2013, 31, 47-53.	2.1	64
16	Low-Intensity Laser Irradiation Stimulates Wound Healing in Diabetic Wounded Fibroblast Cells (WS1). Diabetes Technology and Therapeutics, 2010, 12, 971-978.	2.4	61
17	Synthesis of Zinc Oxide Nanoparticles Using Rubus fairholmianus Root Extract and Their Activity against Pathogenic Bacteria. Molecules, 2021, 26, 3029.	1.7	57
18	Lowâ€intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Lasers in Surgery and Medicine, 2012, 44, 429-434.	1.1	54

#	Article	IF	CITATIONS
19	Role of photobiomodulation on the activation of the Smad pathway via TGF-β in wound healing. Journal of Photochemistry and Photobiology B: Biology, 2018, 189, 138-144.	1.7	51
20	Expression of genes in normal fibroblast cells (WS1) in response to irradiation at 660nm. Journal of Photochemistry and Photobiology B: Biology, 2014, 130, 146-152.	1.7	48
21	Cellular imaging and bactericidal mechanism of green-synthesized silver nanoparticles against human pathogenic bacteria. Journal of Photochemistry and Photobiology B: Biology, 2018, 178, 259-269.	1.7	48
22	The Influence of Light on Reactive Oxygen Species and NF-DºB in Disease Progression. Antioxidants, 2019, 8, 640.	2.2	47
23	The JAK/STAT signaling pathway and photobiomodulation in chronic wound healing. Cytokine and Growth Factor Reviews, 2017, 38, 73-79.	3.2	46
24	Adipose Derived Stem Cells and Smooth Muscle Cells: Implications for Regenerative Medicine. Stem Cell Reviews and Reports, 2009, 5, 256-265.	5.6	45
25	The link between advanced glycation end products and apoptosis in delayed wound healing. Cell Biochemistry and Function, 2019, 37, 432-442.	1.4	44
26	Irradiation at 636 nm Positively Affects Diabetic Wounded and Hypoxic Cells <i>in Vitro</i> . Photomedicine and Laser Surgery, 2011, 29, 521-530.	2.1	43
27	Photobiomodulation at 660 nm stimulates proliferation and migration of diabetic wounded cells via the expression of epidermal growth factor and the JAK/STAT pathway. Journal of Photochemistry and Photobiology B: Biology, 2018, 179, 74-83.	1.7	43
28	Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells. International Journal of Biological Macromolecules, 2018, 109, 220-230.	3.6	43
29	Irradiation with a 632.8 nm Helium-Neon Laser with 5 J/cm ² Stimulates Proliferation and Expression of Interleukin-6 in Diabetic Wounded Fibroblast Cells. Diabetes Technology and Therapeutics, 2007, 9, 451-459.	2.4	41
30	Localization and phototoxic effect of zinc sulfophthalocyanine photosensitizer in human colon (DLD-1) and lung (A549) carcinoma cells (in vitro). Photodiagnosis and Photodynamic Therapy, 2012, 9, 52-59.	1.3	33
31	Recent Trends of Biocompatible and Biodegradable Nanoparticles in Drug Delivery: A Review. Current Medicinal Chemistry, 2016, 23, 3730-3751.	1.2	33
32	Cellular Signalling and Photobiomodulation in Chronic Wound Repair. International Journal of Molecular Sciences, 2021, 22, 11223.	1.8	33
33	Photobiomodulation in diabetic wound healing: A review of red and nearâ€infrared wavelength applications. Cell Biochemistry and Function, 2021, 39, 596-612.	1.4	31
34	The primary subcellular localization of Zinc phthalocyanine and its cellular impact on viability, proliferation and structure of breast cancer cells (MCF-7). Journal of Photochemistry and Photobiology B: Biology, 2013, 120, 171-176.	1.7	30
35	Effect of 660Ânm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers in Medical Science, 2018, 33, 1085-1093.	1.0	29
36	Curcumin and Gymnema sylvestre extract loaded graphene oxide-polyhydroxybutyrate‑sodium alginate composite for diabetic wound regeneration. Reactive and Functional Polymers, 2020, 154, 104671.	2.0	29

#	Article	IF	CITATIONS
37	Multiorganelle Localization of Metallated Phthalocyanine Photosensitizer in Colorectal Cancer Cells (DLD-1 and CaCo-2) Enhances Efficacy of Photodynamic Therapy. International Journal of Photoenergy, 2014, 2014, 1-10.	1.4	28
38	Photobiomodulation at 660 nm Stimulates Fibroblast Differentiation. Lasers in Surgery and Medicine, 2020, 52, 671-681.	1.1	28
39	DNA damage after phototherapy in wounded fibroblast cells irradiated with 16J/cm2. Journal of Photochemistry and Photobiology B: Biology, 2009, 94, 131-137.	1.7	27
40	Therapeutic Efficacy of Home-Use Photobiomodulation Devices: A Systematic Literature Review. Photobiomodulation, Photomedicine, and Laser Surgery, 2019, 37, 4-16.	0.7	26
41	Phototoxic effect of photodynamic therapy on lung cancer cells grown as a monolayer and three dimensional multicellular spheroids. Lasers in Surgery and Medicine, 2013, 45, 186-194.	1.1	25
42	Cell Adhesion Molecules are Mediated by Photobiomodulation at 660 nm in Diabetic Wounded Fibroblast Cells. Cells, 2018, 7, 30.	1.8	24
43	Effectiveness of Helium-Neon Laser Irradiation on Viability and Cytotoxicity of Diabetic-Wounded Fibroblast Cells. Photomedicine and Laser Surgery, 2007, 25, 474-481.	2.1	23
44	Induced Cell Death Pathway Post Photodynamic Therapy Using a Metallophthalocyanine Photosensitizer in Breast Cancer Cells. Photomedicine and Laser Surgery, 2014, 32, 205-211.	2.1	22
45	Resistance of Lung Cancer Cells Grown as Multicellular Tumour Spheroids to Zinc Sulfophthalocyanine Photosensitization. International Journal of Molecular Sciences, 2015, 16, 10185-10200.	1.8	22
46	Photobiomodulation alters matrix protein activity in stressed fibroblast cells in vitro. Journal of Biophotonics, 2018, 11, e201700127.	1.1	20
47	Laser Irradiation Alters the Expression Profile of Genes Involved in the Extracellular Matrix <i>In Vitro</i> . International Journal of Photoenergy, 2014, 2014, 1-17.	1.4	19
48	The use of lasers and light sources in skin rejuvenation. Clinics in Dermatology, 2019, 37, 358-364.	0.8	19
49	The "in's and outs―of laser hair removal: a mini review. Journal of Cosmetic and Laser Therapy, 2019, 21, 316-322.	0.3	19
50	Understanding the perspectives of forkhead transcription factors in delayed wound healing. Journal of Cell Communication and Signaling, 2019, 13, 151-162.	1.8	16
51	Healing Effects of Photobiomodulation on Diabetic Wounds. Applied Sciences (Switzerland), 2019, 9, 5114.	1.3	15
52	<p>Selective Laser Efficiency of Green-Synthesized Silver Nanoparticles by Aloe arborescens and Its Wound Healing Activities in Normal Wounded and Diabetic Wounded Fibroblast Cells: In vitro Studies</p> . International Journal of Nanomedicine, 2020, Volume 15, 6855-6870.	3.3	15
53	Photobiomodulation reduces oxidative stress in diabetic wounded fibroblast cells by inhibiting the FOXO1 signaling pathway. Journal of Cell Communication and Signaling, 2021, 15, 195-206.	1.8	14
54	Modes of Cell Death Induced by Photodynamic Therapy Using Zinc Phthalocyanine in Lung Cancer Cells Grown as a Monolayer and Three-Dimensional Multicellular Spheroids. Molecules, 2017, 22, 791.	1.7	12

#	Article	IF	CITATIONS
55	Evaluation of cell damage induced by irradiated Zinc-Phthalocyanine-gold dendrimeric nanoparticles in a breast cancer cell line. Biomedical Journal, 2018, 41, 254-264.	1.4	12
56	Genetic Aberrations Associated with Photodynamic Therapy in Colorectal Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 3254.	1.8	12
57	Photobiomodulation and the expression of genes related to the JAK/STAT signalling pathway in wounded and diabetic wounded cells. Journal of Photochemistry and Photobiology B: Biology, 2020, 204, 111791.	1.7	12
58	Conventional podiatric intervention and phototherapy in the treatment of diabetic ulcers. Seminars in Vascular Surgery, 2015, 28, 172-183.	1.1	11
59	Levels of Cyclooxygenase 2, Interleukin-6, and Tumour Necrosis Factor-α in Fibroblast Cell Culture Models after Photobiomodulation at 660 nm. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	10
60	Effect of photobiomodulation therapy on inflammatory cytokines in healing dynamics of diabetic wounds: a systematic review of preclinical studies. Archives of Physiology and Biochemistry, 2023, 129, 663-670.	1.0	10
61	Therapeutic Efficacy of Home-Use Photobiomodulation Devices: A Systematic Literature Review. Photomedicine and Laser Surgery, 2018, , .	2.1	9
62	Effect of photobiomodulation on cellular migration and survival in diabetic and hypoxic diabetic wounded fibroblast cells. Lasers in Medical Science, 2021, 36, 365-374.	1.0	8
63	Cellular Damage in Diabetic Wounded Fibroblast Cells following Phototherapy at 632.8, 830, and 1064 nm. Laser Chemistry, 2007, 2007, 1-9.	0.5	7
64	Phototherapy promotes cell migration in the presence of hydroxyurea. Lasers in Medical Science, 2009, 24, 144-150.	1.0	7
65	Natural deep eutectic solvent supported targeted solid–liquid polymer carrier for breast cancer therapy. RSC Advances, 2020, 10, 36989-37004.	1.7	6
66	In Vitro Wound Healing Potential of Photobiomodulation Is Possibly Mediated by Its Stimulatory Effect on AKT Expression in Adipose-Derived Stem Cells. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-11.	1.9	6
67	Characterization of a multiple particle delivery complex and determination of cellular photodamage in skin fibroblast and breast cancer cell lines. Journal of Biophotonics, 2018, 11, e201700077.	1.1	5
68	Effect of wavelength and fluence on morphology, cellular and genetic integrity of diabetic wounded human skin fibroblasts. , 2006, 6140, 41.		4
69	The use of phototherapy in the treatment of diabetic ulcers. Journal of Endocrinology Metabolism and Diabetes of South Africa, 2012, 17, 128-132.	0.4	4
70	Profiling of genes central to human mitochondrial energy metabolism following low intensity laser irradiation. AIP Conference Proceedings, 2012, , .	0.3	3
71	Biopolymer-Based Composites for Medical Applications. , 2020, , 20-28.		3
72	Photodynamic effects of gold nanoparticles in a breast cancer cell line (MCF-7) <i>in vitro</i> . Proceedings of SPIE, 2015, , .	0.8	2

#	Article	IF	CITATIONS
73	Healing of Diabetic Ulcers Using Photobiomodulation. Photomedicine and Laser Surgery, 2015, 33, 237-239.	2.1	2
74	The prevalence of osteoarthritic symptoms of the hands amongst female massage therapists. Health SA Gesondheid, 2017, 22, 184-193.	0.3	2
75	Regulatory Processes of the Canonical Wnt/Ĵ²-Catenin Pathway and Photobiomodulation in Diabetic Wound Repair. International Journal of Molecular Sciences, 2022, 23, 4210.	1.8	2
76	Are MIQE Guidelines Being Adhered to in qPCR Investigations in Photobiomodulation Experiments?. Photomedicine and Laser Surgery, 2017, 35, 69-70.	2.1	1
77	The qualification and training of laser/intense pulse light hair removal operators within South Africa. Journal of Cosmetic Dermatology, 2020, 19, 1980-1989.	0.8	1
78	DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation. Proceedings of SPIE, 2009, , .	0.8	0
79	Irradiation at 660 nm modulates different genes central to wound healing in wounded and diabetic wounded cell models. Proceedings of SPIE, 2014, , .	0.8	0
80	Chapter 7 Mitochondrial Light Absorption and Its Effect on ATP Production. , 2016, , 101-118.		0
81	He-Ne Laser Irradiation Stimulates Proliferation and Migration of Diabetic Wounded Fibroblast Cells. Lecture Notes in Electrical Engineering, 2008, , 221-232.	0.3	0
82	Influence of 660 and 830 nm Laser Irradiation on Genetic Profile of Extracellular Matrix Proteins in Diabetic Wounded Human Skin Fibroblast Cells. , 2016, , .		0
83	Regenerative Properties of Laser Light. , 2016, , 182-199.		0