
Camille Parmesan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3120893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421, 37-42.	13.7	8,607
2	Ecological responses to recent climate change. Nature, 2002, 416, 389-395.	13.7	7,926
3	Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 637-669.	3.8	6,374
4	Climate Extremes: Observations, Modeling, and Impacts. Science, 2000, 289, 2068-2074.	6.0	3,976
5	Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 1999, 399, 579-583.	13.7	1,874
6	Global imprint of climate change on marine life. Nature Climate Change, 2013, 3, 919-925.	8.1	1,602
7	Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 2007, 13, 1860-1872.	4.2	1,083
8	The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science, 2011, 334, 652-655.	6.0	1,062
9	Assisted Colonization and Rapid Climate Change. Science, 2008, 321, 345-346.	6.0	786
10	Warming experiments underpredict plant phenological responses to climate change. Nature, 2012, 485, 494-497.	13.7	772
11	Climate and species' range. Nature, 1996, 382, 765-766.	13.7	621
12	Impacts of Extreme Weather and Climate on Terrestrial Biota*. Bulletin of the American Meteorological Society, 2000, 81, 443-450.	1.7	598
13	An Introduction to Trends in Extreme Weather and Climate Events: Observations, Socioeconomic Impacts, Terrestrial Ecological Impacts, and Model Projections*. Bulletin of the American Meteorological Society, 2000, 81, 413-416.	1.7	478
14	Assessing "Dangerous Climate Change― Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE, 2013, 8, e81648.	1.1	448
15	Geographical limits to species-range shifts are suggested by climate velocity. Nature, 2014, 507, 492-495.	13.7	436
16	Plants and climate change: complexities and surprises. Annals of Botany, 2015, 116, 849-864.	1.4	381
17	Divergent responses to spring and winter warming drive community level flowering trends. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9000-9005.	3.3	318
18	Empirical perspectives on species borders: from traditional biogeography to global change. Oikos, 2005, 108, 58-75.	1.2	299

CAMILLE PARMESAN

#	Article	IF	CITATIONS
19	Rapid human-induced evolution of insect–host associations. Nature, 1993, 366, 681-683.	13.7	265
20	Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3161-3176.	1.8	243
21	Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Global Change Biology, 2015, 21, 4464-4480.	4.2	224
22	Beyond climate change attribution in conservation and ecological research. Ecology Letters, 2013, 16, 58-71.	3.0	167
23	Ecological and methodological drivers of species' distribution and phenology responses to climate change. Global Change Biology, 2016, 22, 1548-1560.	4.2	162
24	Overstretching attribution. Nature Climate Change, 2011, 1, 2-4.	8.1	137
25	Sensitivity of Spring Phenology to Warming Across Temporal and Spatial Climate Gradients in Two Independent Databases. Ecosystems, 2012, 15, 1283-1294.	1.6	107
26	Distinguishing between â€~preference' and â€~motivation' in food choice: an example from insect oviposition. Animal Behaviour, 1992, 44, 463-471.	0.8	102
27	Sources of variations in patterns of plant–insect association. Nature, 1993, 361, 251-253.	13.7	91
28	Lethal trap created by adaptive evolutionary response to an exotic resource. Nature, 2018, 557, 238-241.	13.7	89
29	Variation among conspecific insect populations in the mechanistic basis of diet breadth. Animal Behaviour, 1989, 37, 751-759.	0.8	71
30	Climate change and marine life. Biology Letters, 2012, 8, 907-909.	1.0	60
31	Human–nature connectedness as a pathway to sustainability: A global metaâ€analysis. Conservation Letters, 2022, 15, e12852.	2.8	59
32	Absence of adaptive learning from the oviposition foraging behaviour of a checkerspot butterfly. Animal Behaviour, 1995, 50, 161-175.	0.8	56
33	Correlates of speed of evolution of host preference in a set of twelve populations of the butterfly <i>Euphydryas editha</i> . Ecoscience, 1994, 1, 107-114.	0.6	53
34	Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming. Oikos, 2015, 124, 41-53.	1.2	52
35	Unexpected density-dependent effects of herbivory in a wild population of the annual Collinsia torreyi. Journal of Ecology, 2000, 88, 392-400.	1.9	47
36	Endangered Quino checkerspot butterfly and climate change: Short-term success but long-term vulnerability?. Journal of Insect Conservation, 2015, 19, 185-204.	0.8	45

CAMILLE PARMESAN

#	Article	IF	CITATIONS
37	Strengthening confidence in climate change impact science. Global Ecology and Biogeography, 2015, 24, 64-76.	2.7	45
38	Rapid Microsatellite Isolation from a Butterfly by De Novo Transcriptome Sequencing: Performance and a Comparison with AFLP-Derived Distances. PLoS ONE, 2010, 5, e11212.	1.1	42
39	Strengthened scientific support for the Endangerment Finding for atmospheric greenhouse gases. Science, 2019, 363, .	6.0	34
40	Contrasting responses to climate change at Himalayan treelines revealed by population demographics of two dominant species. Ecology and Evolution, 2020, 10, 1209-1222.	0.8	25
41	Hostâ€associated genomic differentiation in congeneric butterflies: now you see it, now you do not. Molecular Ecology, 2013, 22, 4753-4766.	2.0	24
42	Evidence against plant ?apparency? as a constraint on evolution of insect search efficiency (Lepidoptera: Nymphalidae). Journal of Insect Behavior, 1991, 4, 417-430.	0.4	22
43	Colonizations cause diversification of host preferences: A mechanism explaining increased generalization at range boundaries expanding under climate change. Global Change Biology, 2021, 27, 3505-3518.	4.2	20
44	Genetic, ecological, behavioral and geographic differentiation of populations in a thistle weevil: implications for speciation and biocontrol. Evolutionary Applications, 2008, 1, 112-128.	1.5	19
45	Butterflies embrace maladaptation and raise fitness in colonizing novel host. Evolutionary Applications, 2019, 12, 1417-1433.	1.5	18
46	Variation in heat shock protein expression at the latitudinal range limits of a widelyâ€distributed species, the <scp>G</scp> lanville fritillary butterfly (<i><scp>M</scp>elitaea cinxia</i>). Physiological Entomology, 2016, 41, 241-248.	0.6	15
47	Mosaics of climatic stress across species' ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210003.	1.8	15
48	Takeoff temperatures in <i>Melitaea cinxia</i> butterflies from latitudinal and elevational range limits: a potential adaptation to solar irradiance. Ecological Entomology, 2019, 44, 389-396.	1.1	9
49	Detection of range shifts: General methodological issues and case studies of butterflies. , 2001, , 57-76.		9
50	Isolation and characterization of nuclear microsatellite loci for the common green darner dragonfly Anax junius (Odonata: Aeshnidae) to constrain patterns of phenotypic and spatial diversity. Molecular Ecology Notes, 2007, 7, 845-847.	1.7	6
51	Model vs. experiment to predict crop losses. Science, 2018, 362, 1122-1122.	6.0	5
52	Influence of bioenergy crops on pollinator activity varies with crop type and distance. GCB Bioenergy, 2018, 10, 960-971.	2.5	5
53	From medicine to butterflies and back again. Temperature, 2014, 1, 67-70.	1.7	4
54	The importance of eco-evolutionary dynamics for predicting and managing insect range shifts. Current Opinion in Insect Science, 2022, 52, 100939.	2.2	4

#	Article	IF	CITATIONS
55	Where the wild things were. Daedalus, 2008, 137, 31-38.	0.9	3
56	Invasive Species Unchecked by Climate—Response. Science, 2012, 335, 538-539.	6.0	3
57	Synergies Between COVID-19 and Climate Change Impacts and Responses. Journal of Extreme Events, 2021, 08, .	1.2	3
58	Visualization of Climate-Change Basics. Conservation Biology, 2008, 22, 805-806.	2.4	0