Liyuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3120871/publications.pdf

Version: 2024-02-01

257450 289244 3,060 39 24 40 citations g-index h-index papers 40 40 40 3890 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452, 214297.	18.8	92
2	Interlayer gap widened TiS2 for highly efficient sodium-ion storage. Journal of Materials Science and Technology, 2022, 107, 64-69.	10.7	50
3	Dendrite-free NaK alloy Anodes: Electrodes preparation and interfacial reaction. Chemical Engineering Journal, 2022, 432, 134353.	12.7	11
4	Synergistic dual conversion reactions assisting Pb-S electrochemistry for energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118675119.	7.1	28
5	Controllable C-N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu-S batteries. Energy Storage Materials, 2022, 48, 74-81.	18.0	28
6	Ti2Nb10O29@C hollow submicron ribbons for superior lithium storage. Ceramics International, 2022, 48, 23334-23340.	4.8	7
7	Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chemical Engineering Journal, 2021, 421, 127767.	12.7	64
8	Surface chemistry of LiFePO4 cathode material as unraveled by HRTEM and XPS. Ionics, 2021, 27, 31-37.	2.4	9
9	Copper niobate nanowires boosted by a N, S co-doped carbon coating for superior lithium storage. Dalton Transactions, 2021, 50, 11030-11038.	3.3	11
10	Thermodynamic analysis and perspective of aqueous metal-sulfur batteries. Materials Today, 2021, 49, 184-200.	14.2	31
11	Sodium-storage behavior of electron-rich element-doped amorphous carbon. Applied Physics Reviews, 2021, 8, .	11.3	22
12	Selfâ€Healing Properties of Alkali Metals under "Highâ€Energy Conditions―in Batteries. Advanced Energy Materials, 2021, 11, 2100470.	19.5	13
13	Hydrogen Bond-Assisted Ultra-Stable and Fast Aqueous NH4+ Storage. Nano-Micro Letters, 2021, 13, 139.	27.0	77
14	Hydrothermal synthesis of \hat{l}^2 -MnO2 nanorods for highly efficient zinc-ion storage. Ionics, 2021, 27, 3943-3950.	2.4	6
15	Laserâ€Induced Graphene Assisting Selfâ€Conversion Reaction for Sulfurâ€Free Aqueous Cuâ€6 Battery. Advanced Functional Materials, 2021, 31, 2103893.	14.9	27
16	Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries. Nano-Micro Letters, 2021, 13, 166.	27.0	73
17	Expounding the Initial Alloying Behavior of Na–K Liquid Alloy Electrodes. ACS Applied Materials & Description (1997) Applied Materia	8.0	7
18	Insights into host materials for aqueous proton batteries: structure, mechanism and prospect. Nano Energy, 2021, 89, 106400.	16.0	55

#	Article	IF	CITATIONS
19	Ion competition and limiting dendrite growth models of hybrid-ion symmetric cell. Energy Storage Materials, 2021, 42, 268-276.	18.0	20
20	Insight into anion storage batteries: Materials, properties and challenges. Energy Storage Materials, 2021, 42, 42-67.	18.0	28
21	An anode-free aqueous dual-ion battery. Sustainable Energy and Fuels, 2021, 5, 3298-3302.	4.9	9
22	Common ion effect enhanced Prussian blue analogues for aqueous ammonium ion storage. Dalton Transactions, 2021, 50, 6520-6527.	3. 3	24
23	Nonâ€Newtonian Fluid State K–Na Alloy for a Stretchable Energy Storage Device. Small Methods, 2019, 3, 1900383.	8.6	39
24	Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy, 2019, 62, 367-375.	16.0	93
25	In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct Highâ€Performance Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1806470.	21.0	133
26	High Capacity and Superior Rate Performances Coexisting in Carbon-Based Sodium-Ion Battery Anode. Research, 2019, 2019, 6930294.	5.7	9
27	Large-scale synthesis of high-quality lithium-graphite hybrid anodes for mass-controllable and cycling-stable lithium metal batteries. Energy Storage Materials, 2018, 15, 31-36.	18.0	59
28	Enhanced sulfide chemisorption by conductive Al-doped ZnO decorated carbon nanoflakes for advanced Li–S batteries. Nano Research, 2018, 11, 477-489.	10.4	36
29	3D TiC/C Core/Shell Nanowire Skeleton for Dendriteâ€Free and Longâ€Life Lithium Metal Anode. Advanced Energy Materials, 2018, 8, 1702322.	19.5	237
30	Exploring Selfâ€Healing Liquid Na–K Alloy for Dendriteâ€Free Electrochemical Energy Storage. Advanced Materials, 2018, 30, e1804011.	21.0	112
31	Core-shell structure of porous silicon with nitrogen-doped carbon layer for lithium-ion batteries. Materials Research Bulletin, 2018, 108, 170-175.	5.2	25
32	Straw–Brick‣ike Carbon Fiber Cloth/Lithium Composite Electrode as an Advanced Lithium Metal Anode. Small Methods, 2018, 2, 1800035.	8.6	106
33	High-content of sulfur uniformly embedded in mesoporous carbon: a new electrodeposition synthesis and an outstanding lithium–sulfur battery cathode. Journal of Materials Chemistry A, 2017, 5, 5905-5911.	10.3	37
34	Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano, 2017, 11, 2459-2469.	14.6	700
35	Synthesis and electrochemical performance of nano TiO ₂ (B)-coated Li[Li _{0.2} Mn _{0.54} Co _{0.13} Ni _{0.13}]O ₂ cathode materials for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 12962-12968.	2.8	21
36	One-pot Biotemplate Synthesis of FeS 2 Decorated Sulfur-doped Carbon Fiber as High Capacity Anode for Lithium-ion Batteries. Electrochimica Acta, 2016, 209, 201-209.	5 . 2	63

LIYUAN ZHANG

#	Article	IF	CITATIONS
37	Sn ⁴⁺ Ion Decorated Highly Conductive Ti ₃ C ₂ MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. ACS Nano, 2016, 10, 2491-2499.	14.6	632
38	Sulfur synchronously electrodeposited onto exfoliated graphene sheets as a cathode material for advanced lithiumâ€"sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 16513-16519.	10.3	37
39	Well-dispersed ultrafine Mn ₃ O ₄ nanocrystals on reduced graphene oxide with high electrochemical Li-storage performance. New Journal of Chemistry, 2014, 38, 4743-4747.	2.8	26