
Cédric Tard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3120861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases. Chemical Reviews, 2009, 109, 2245-2274.	47.7	1,184
2	Synthesis of the H-cluster framework of iron-only hydrogenase. Nature, 2005, 433, 610-613.	27.8	498
3	Iron-only hydrogenase: Synthetic, structural and reactivity studies of model compounds. Coordination Chemistry Reviews, 2005, 249, 1641-1652.	18.8	263
4	Thermochromic Luminescence of Copper Iodide Clusters: The Case of Phosphine Ligands. Inorganic Chemistry, 2011, 50, 10682-10692.	4.0	262
5	Bioinspired Iron Sulfide Nanoparticles for Cheap and Long-Lived Electrocatalytic Molecular Hydrogen Evolution in Neutral Water. ACS Catalysis, 2014, 4, 681-687.	11.2	164
6	Modeling [Feâ^'Fe] Hydrogenase:  Evidence for Bridging Carbonyl and Distal Iron Coordination Vacancy in an Electrocatalytically Competent Proton Reduction by an Iron Thiolate Assembly That Operates through Fe(0)â^'Fe(II) Levels. Journal of the American Chemical Society, 2007, 129, 11085-11092.	13.7	114
7	Low-Cost Nanostructured Iron Sulfide Electrocatalysts for PEM Water Electrolysis. ACS Catalysis, 2016, 6, 2626-2631.	11.2	105
8	Photostable Secondâ€Harmonic Generation from a Single KTiOPO ₄ Nanocrystal for Nonlinear Microscopy. Small, 2008, 4, 1332-1336.	10.0	100
9	Thermochromic Luminescence of Solâ^Gel Films Based on Copper Iodide Clusters. Chemistry of Materials, 2008, 20, 7010-7016.	6.7	95
10	Hydrogen-Bond Relays in Concerted Proton–Electron Transfers. Accounts of Chemical Research, 2012, 45, 372-381.	15.6	84
11	Hierarchically Structured Ultraporous Iridiumâ€Based Materials: A Novel Catalyst Architecture for Proton Exchange Membrane Water Electrolyzers. Advanced Energy Materials, 2019, 9, 1802136.	19.5	72
12	Electropolymeric materials incorporating subsite structures related to iron-only hydrogenase: active ester functionalised poly(pyrroles) for covalent binding of {2Fe3S}-carbonyl/cyanide assemblies. Chemical Communications, 2007, , 1535.	4.1	69
13	Inserting a Hydrogenâ€Bond Relay between Proton Exchanging Sites in Protonâ€Coupled Electron Transfers. Angewandte Chemie - International Edition, 2010, 49, 3803-3806.	13.8	65
14	A novel {Fei–Feii–Feii–Fei} iron thiolate carbonyl assembly which electrocatalyses hydrogen evolution. Chemical Communications, 2005, , 133-135.	4.1	62
15	The origin of the high electrochemical activity of pseudo-amorphous iridium oxides. Nature Communications, 2021, 12, 3935.	12.8	56
16	Controlling carbon monoxide binding at di-iron units related to the iron-only hydrogenase sub-site. Chemical Communications, 2008, , 606-608.	4.1	53
17	Breaking Bonds with Electrons and Protons. Models and Examples. Accounts of Chemical Research, 2014, 47, 271-280.	15.6	47
18	On the electronic structure of the hydrogenase H-cluster. Chemical Communications, 2006, , 3696.	4.1	44

Cédric Tard

#	Article	IF	CITATIONS
19	Balanced homodyne detection of second-harmonic generation from isolated subwavelength emitters. Applied Physics Letters, 2006, 89, 121118.	3.3	43
20	Catalysis of CO ₂ Electrochemical Reduction by Protonated Pyridine and Similar Molecules. Useful Lessons from a Methodological Misadventure. ACS Energy Letters, 2018, 3, 695-703.	17.4	42
21	Proton-Coupled Electron Transfer in Azobenzene/Hydrazobenzene Couples with Pendant Acid–Base Functions. Hydrogen-Bonding and Structural Effects. Journal of the American Chemical Society, 2014, 136, 8907-8910.	13.7	38
22	Attempts To Catalyze the Electrochemical CO ₂ -to-Methanol Conversion by Biomimetic 2e [–] + 2H ⁺ Transferring Molecules. Journal of the American Chemical Society, 2016, 138, 1017-1021.	13.7	37
23	Concerted heavy-atom bond cleavage and proton and electron transfers illustrated by proton-assisted reductive cleavage of an O–O bond. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8559-8564.	7.1	35
24	Nanodiffusion in electrocatalytic films. Nature Materials, 2017, 16, 1016-1021.	27.5	34
25	Ligand "noninnocence―in coordination complexes vs. kinetic, mechanistic, and selectivity issues in electrochemical catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9104-9109.	7.1	33
26	<i>De Novo</i> Design and Characterization of Copper Metallopeptides Inspired by Native Cupredoxins. Inorganic Chemistry, 2015, 54, 9470-9482.	4.0	25
27	pH-dependence on HER electrocatalytic activity of iron sulfide pyrite nanoparticles. Electrochemistry Communications, 2018, 91, 10-14.	4.7	24
28	H-bond relays in proton-coupled electron transfers. Oxidation of a phenol concerted with proton transport to a distal base through an OH relay. Physical Chemistry Chemical Physics, 2011, 13, 5353.	2.8	21
29	Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses. Optics Express, 2009, 17, 4652.	3.4	20
30	Conductive Mesoporous Catalytic Films. Current Distortion and Performance Degradation by Dual-Phase Ohmic Drop Effects. Analysis and Remedies. Journal of Physical Chemistry C, 2016, 120, 21263-21271.	3.1	19
31	Clarifying the Copper Coordination Environment in a <i>de Novo</i> Designed Red Copper Protein. Inorganic Chemistry, 2018, 57, 12291-12302.	4.0	19
32	Electrochemical Active Surface Area Determination of Iridiumâ€Based Mixed Oxides by Mercury Underpotential Deposition. ChemElectroChem, 2021, 8, 3519-3524.	3.4	17
33	Development of a Rubredoxin-Type Center Embedded in a <i>de Dovo</i> -Designed Three-Helix Bundle. Biochemistry, 2018, 57, 2308-2316.	2.5	16
34	Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation. Chemistry - A European Journal, 2020, 26, 249-258.	3.3	16
35	Effect of Base Pairing on the Electrochemical Oxidation of Guanine. Journal of the American Chemical Society, 2010, 132, 10142-10147.	13.7	13
36	Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templates. Materials Horizons, 2020, 7, 541-550.	12.2	13

Cédric Tard

#	Article	IF	CITATIONS
37	Traversing the Red–Green–Blue Color Spectrum in Rationally Designed Cupredoxins. Journal of the American Chemical Society, 2020, 142, 15282-15294.	13.7	10
38	A Pioneering Career in Electrochemistry: Jean-Michel Savéant. ACS Catalysis, 2021, 11, 3224-3238.	11.2	7
39	Hollow Iridium-Based Catalysts for the Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolyzers. ECS Transactions, 2017, 80, 1077-1084.	0.5	3
40	Electronic Communication between Dithiolato-Bridged Diiron Carbonyl and S-Bridged Redox-Active Centres. Inorganics, 2019, 7, 37.	2.7	3
41	Porous Electrocatalysts: Hierarchically Structured Ultraporous Iridium-Based Materials: A Novel Catalyst Architecture for Proton Exchange Membrane Water Electrolyzers (Adv. Energy Mater.) Tj ETQq1 1 0.784	43 14. æBT	/Overlock 10