
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3120331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diet and food selection by fish larvae in turbid and clear water shallow temperate lakes. Science of the Total Environment, 2022, 804, 150050.	3.9	5
2	Effects of DOC addition from different sources on phytoplankton community in a temperate eutrophic lake: An experimental study exploring lake compartments. Science of the Total Environment, 2022, 803, 150049.	3.9	11
3	Responses of coastal sediment phosphorus release to elevated urea loading. Marine Pollution Bulletin, 2022, 174, 113203.	2.3	2
4	The impact of climate change and eutrophication on phosphorus forms in sediment: Results from a long-term lake mesocosm experiment. Science of the Total Environment, 2022, 825, 153751.	3.9	7
5	External Phosphorus Loading in New Lakes. Water (Switzerland), 2022, 14, 1008.	1.2	5
6	Patterns of Seasonal Stability of Lake Phytoplankton Mediated by Resource and Grazer Control During Two Decades of Re-oligotrophication. Ecosystems, 2021, 24, 911-925.	1.6	5
7	Nutrient Loading, Temperature and Heat Wave Effects on Nutrients, Oxygen and Metabolism in Shallow Lake Mesocosms Pre-Adapted for 11 Years. Water (Switzerland), 2021, 13, 127.	1.2	10
8	Effects of nitrate on phosphorus release from lake sediments. Water Research, 2021, 194, 116894.	5.3	57
9	Warming exacerbates the impact of nutrient enrichment on microbial functional potentials important to the nutrient cycling in shallow lake mesocosms. Limnology and Oceanography, 2021, 66, 2481-2495.	1.6	6
10	Food Webs and Fish Size Patterns in Insular Lakes Partially Support Climate-Related Features in Continental Lakes. Water (Switzerland), 2021, 13, 1380.	1.2	2
11	The impacts of extreme climate on summer-stratified temperate lakes: Lake SÃ,holm, Denmark, as an example. Hydrobiologia, 2021, 848, 3521-3537.	1.0	8
12	Copepods as environmental indicator in lakes: special focus on changes in the proportion of calanoids along nutrient and pH gradients. Aquatic Ecology, 2021, 55, 1241-1252.	0.7	6
13	Abiotic and biotic drivers of temporal dynamics in the spatial heterogeneity of zooplankton communities across lakes in recovery from eutrophication. Science of the Total Environment, 2021, 778, 146368.	3.9	9
14	Increased Nitrogen Loading Boosts Summer Phytoplankton Growth by Alterations in Resource and Zooplankton Control: A Mesocosm Study. Frontiers in Environmental Science, 2021, 9, .	1.5	4
15	Do Cross-Latitude and Local Studies Give Similar Predictions of Phytoplankton Responses to Warming? An Analysis of Monitoring Data from 504 Danish Lakes. Sustainability, 2021, 13, 14049.	1.6	5
16	Relationships between breeding waterbird abundance, diversity, and clear water status after the restoration of two shallow nutrientâ€rich Danish lakes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 237-245.	0.9	7
17	Seasonal and long-term trends in the spatial heterogeneity of lake phytoplankton communities over two decades of restoration and climate change. Science of the Total Environment, 2020, 748, 141106.	3.9	8
18	Impact of nutrients and water level changes on submerged macrophytes along a temperature gradient: A panâ€European mesocosm experiment. Global Change Biology, 2020, 26, 6831-6851.	4.2	33

#	Article	IF	CITATIONS
19	Impact of Nutrients, Temperatures, and a Heat Wave on Zooplankton Community Structure: An Experimental Approach. Water (Switzerland), 2020, 12, 3416.	1.2	13
20	Phytoplankton Community Response to Nutrients, Temperatures, and a Heat Wave in Shallow Lakes: An Experimental Approach. Water (Switzerland), 2020, 12, 3394.	1.2	29
21	Predicting ecosystem state changes in shallow lakes using an aquatic ecosystem model: Lake Hinge, Denmark, an example. Ecological Applications, 2020, 30, e02160.	1.8	33
22	Decadal changes in zooplankton biomass, composition, and body mass in four shallow brackish lakes in Denmark subjected to varying degrees of eutrophication. Inland Waters, 2020, 10, 186-196.	1.1	11
23	Lake types and their definition: a case study from Denmark. Inland Waters, 2020, 10, 227-240.	1.1	14
24	Brian Moss: the wizard of shallow lakes. Inland Waters, 2020, 10, 153-158.	1.1	0
25	Toward predicting climate change effects on lakes: a comparison of 1656 shallow lakes from Florida and Denmark reveals substantial differences in nutrient dynamics, metabolism, trophic structure, and top-down control. Inland Waters, 2020, 10, 197-211.	1.1	38
26	Modeling the Ecological Response of a Temporarily Summer-Stratified Lake to Extreme Heatwaves. Water (Switzerland), 2020, 12, 94.	1.2	16
27	To measure chlorophyll or phytoplankton biovolume: an aquatic conundrum with implications for the management of lakes. Lake and Reservoir Management, 2019, 35, 181-192.	0.4	8
28	Effects of trophic status, water level, and temperature on shallow lake metabolism and metabolic balance: A standardized panâ€European mesocosm experiment. Limnology and Oceanography, 2019, 64, 616-631.	1.6	23
29	Effects of lake restoration on breeding abundance of globally declining common pochard (Aythya) Tj ETQq1 1 C).784314 rg 1.0	$gBT_{10}/Overlock$
30	Synergy between nutrients and warming enhances methane ebullition from experimental lakes. Nature Climate Change, 2018, 8, 156-160.	8.1	130
31	Effects of warming and nutrients on the microbial food web in shallow lake mesocosms. European Journal of Protistology, 2018, 64, 1-12.	0.5	18
32	Nutrient Utilization Strategies of Algae and Bacteria after the Termination of Nutrient Amendment with Different Phosphorus Dosage: A Mesocosm Case. Geomicrobiology Journal, 2018, 35, 294-299.	1.0	8
33	Gravel pit lakes in Denmark: Chemical and biological state. Science of the Total Environment, 2018, 612, 9-17.	3.9	48
34	Global patterns in the metacommunity structuring of lake macrophytes: regional variations and driving factors. Oecologia, 2018, 188, 1167-1182.	0.9	55
35	Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes. Frontiers in Plant Science, 2018, 9, 194.	1.7	97
36	Effects of multiple stressors on cyanobacteria abundance vary with lake type. Global Change Biology, 2018, 24, 5044-5055.	4.2	84

#	Article	IF	CITATIONS
37	Macrophyte assessment in European lakes: Diverse approaches but convergent views of â€~good' ecological status. Ecological Indicators, 2018, 94, 185-197.	2.6	55
38	High ammonium loading can increase alkaline phosphatase activity and promote sediment phosphorus release: A two-month mesocosm experiment. Water Research, 2018, 145, 388-397.	5.3	61
39	Stable isotope analysis confirms substantial differences between subtropical and temperate shallow lake food webs. Hydrobiologia, 2017, 784, 111-123.	1.0	29
40	Effects of nutrient and water level changes on the composition and size structure of zooplankton communities in shallow lakes under different climatic conditions: a pan-European mesocosm experiment. Aquatic Ecology, 2017, 51, 257-273.	0.7	23
41	Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography, 2017, 44, 1758-1769.	1.4	127
42	Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia, 2017, 795, 35-48.	1.0	124
43	Heatâ€wave effects on greenhouse gas emissions from shallow lake mesocosms. Freshwater Biology, 2017, 62, 1130-1142.	1.2	22
44	Effect of a nitrogen pulse on ecosystem N processing at different temperatures: A mesocosm experiment with ¹⁵ NO ₃ ^{â^'} addition. Freshwater Biology, 2017, 62, 1232-1243.	1.2	10
45	Warming and nutrient enrichment in combination increase stochasticity and beta diversity of bacterioplankton assemblages across freshwater mesocosms. ISME Journal, 2017, 11, 613-625.	4.4	57
46	Ecological resilience in lakes and the conjunction fallacy. Nature Ecology and Evolution, 2017, 1, 1616-1624.	3.4	52
47	Factors controlling the stable isotope composition and C:N ratio of seston and periphyton in shallow lake mesocosms with contrasting nutrient loadings and temperatures. Freshwater Biology, 2017, 62, 1596-1613.	1.2	14
48	The structuring role of fish in Greenland lakes: an overview based on contemporary and paleoecological studies of 87 lakes from the low and the high Arctic. Hydrobiologia, 2017, 800, 99-113.	1.0	28
49	Temperature effects on periphyton, epiphyton and epipelon under a nitrogen pulse in low-nutrient experimental freshwater lakes. Hydrobiologia, 2017, 795, 267-279.	1.0	14
50	Lake Restoration and Management in a Climate Change Perspective: An Introduction. Water (Switzerland), 2017, 9, 122.	1.2	54
51	Repeated Fish Removal to Restore Lakes: Case Study of Lake Væng, Denmark—Two Biomanipulations during 30 Years of Monitoring. Water (Switzerland), 2017, 9, 43.	1.2	33
52	ls Recovery of Large-Bodied Zooplankton after Nutrient Loading Reduction Hampered by Climate Warming? A Long-Term Study of Shallow Hypertrophic Lake SAJbygaard, Denmark. Water (Switzerland), 2016, 8, 341.	1.2	13
53	Long-Term Trends and Temporal Synchrony in Plankton Richness, Diversity and Biomass Driven by Re-Oligotrophication and Climate across 17 Danish Lakes. Water (Switzerland), 2016, 8, 427.	1.2	30
54	Climate Change Will Make Recovery from Eutrophication More Difficult in Shallow Danish Lake SĄ̃bygaard. Water (Switzerland), 2016, 8, 459.	1.2	36

#	Article	IF	CITATIONS
55	Response of Vallisneria spinulosa (Hydrocharitaceae) to contrasting nitrogen loadings in controlled lake mesocosms. Hydrobiologia, 2016, 766, 215-223.	1.0	18
56	Major changes in CO2 efflux when shallow lakes shift from a turbid to a clear water state. Hydrobiologia, 2016, 778, 33-44.	1.0	22
57	Ecological classification of lakes: Uncertainty and the influence of year-to-year variability. Ecological Indicators, 2016, 61, 248-257.	2.6	32
58	Ecological Instability in Lakes: A Predictable Condition?. Environmental Science & Technology, 2016, 50, 3285-3286.	4.6	10
59	Ecosystem change in the large and shallow Lake Säylä Pyhävi, Finland, during the past ~400Âyears: implications for management. Hydrobiologia, 2016, 778, 273-294.	1.0	16
60	Warming shows differential effects on late-season growth and competitive capacity of Elodea canadensis and Potamogeton crispus in shallow lakes. Inland Waters, 2015, 5, 421-432.	1.1	17
61	Factors influencing nitrogen processing in lakes: an experimental approach. Freshwater Biology, 2015, 60, 646-662.	1.2	14
62	Eutrophication effects on greenhouse gas fluxes from shallowâ€lake mesocosms override those of climate warming. Global Change Biology, 2015, 21, 4449-4463.	4.2	132
63	Strong impact of nitrogen loading on submerged macrophytes and algae: a longâ€ŧerm mesocosm experiment in a shallow Chinese lake. Freshwater Biology, 2015, 60, 1525-1536.	1.2	84
64	Macroecological Patterns of Resilience Inferred from a Multinational, Synchronized Experiment. Sustainability, 2015, 7, 1142-1160.	1.6	6
65	Effects of water temperature on summer periphyton biomass in shallow lakes: a pan-European mesocosm experiment. Aquatic Sciences, 2015, 77, 499-510.	0.6	34
66	Homogenization of fish assemblages in different lake depth strata at local and regional scales. Freshwater Biology, 2015, 60, 745-757.	1.2	34
67	Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia, 2015, 750, 201-227.	1.0	355
68	Predation and competition effects on the size diversity of aquatic communities. Aquatic Sciences, 2015, 77, 45-57.	0.6	41
69	Zooplankton response to climate warming: a mesocosm experiment at contrasting temperatures and nutrient levels. Hydrobiologia, 2015, 742, 185-203.	1.0	45
70	Projecting the future ecological state of lakes in Denmark in a 6 degree warming scenario. Climate Research, 2015, 64, 55-72.	0.4	52
71	Heat wave effects on biomass and vegetative growth of macrophytes after long-term adaptation to different temperatures: a mesocosm study. Climate Research, 2015, 66, 265-274.	0.4	21
72	Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology, 2014, 73, .	0.3	235

#	Article	IF	CITATIONS
73	Effects of climate and nutrient load on the water quality of shallow lakes assessed through ensemble runs by PCLake. Ecological Applications, 2014, 24, 1926-1944.	1.8	55
74	Climate change effects on shallow lakes: design and preliminary results of a cross-European climate gradient mesocosm experiment. Estonian Journal of Ecology, 2014, 63, 71.	0.5	30
75	Crossâ€ŧaxon congruence in lake plankton largely independent of environmental gradients. Ecology, 2014, 95, 2778-2788.	1.5	35
76	The applicability of macrophyte compositional metrics for assessing eutrophication in European lakes. Ecological Indicators, 2014, 45, 407-415.	2.6	55
77	Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia, 2013, 710, 95-107.	1.0	219
78	Contrasting roles of water chemistry, lake morphology, land-use, climate and spatial processes in driving phytoplankton richness in the Danish landscape. Hydrobiologia, 2013, 710, 173-187.	1.0	37
79	Descarga localizada de Ãigua subterrânea com fósforo para um lago drenante eutrófico (Lago Væng,) Tj ETG 2013, 21, 1787-1802.	Qq1 1 0.78 0.9	34314 rgBT /(63
80	Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia, 2013, 704, 57-74.	1.0	123
81	Phytoplankton indicator taxa for reference conditions in Northern and Central European lowland lakes. Hydrobiologia, 2013, 704, 97-113.	1.0	34
82	Longâ€ŧerm effects of warming and nutrients on microbes and other plankton in mesocosms. Freshwater Biology, 2013, 58, 483-493.	1.2	56
83	Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: does the method matter?. Hydrobiologia, 2013, 710, 47-59.	1.0	20
84	Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy?. Hydrobiologia, 2013, 710, 3-21.	1.0	156
85	Measurements of uncertainty in macrophyte metrics used to assess European lake water quality. Hydrobiologia, 2013, 704, 179-191.	1.0	34
86	Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia, 2013, 704, 165-177.	1.0	86
87	Daily net ecosystem production in lakes predicted from midday dissolved oxygen saturation: analysis of a fiveâ€year high frequency dataset from 24 mesocosms with contrasting trophic states and temperatures. Limnology and Oceanography: Methods, 2013, 11, 202-212.	1.0	8
88	Watershed land use effects on lake water quality in Denmark. Ecological Applications, 2012, 22, 1187-1200.	1.8	136
89	Biomanipulation as a Restoration Tool to Combat Eutrophication. Advances in Ecological Research, 2012, 47, 411-488.	1.4	211
90	Between-lake variation in the elemental composition of roach (Rutilus rutilus L.). Aquatic Ecology, 2012, 46, 385-394.	0.7	13

6

#	Article	IF	CITATIONS
91	Changes in benthic macroinvertebrate abundance and lake isotope (C, N) signals following biomanipulation: an 18-year study in shallow Lake Vaeng, Denmark. Hydrobiologia, 2012, 686, 135-145.	1.0	14
92	Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia, 2012, 694, 1-39.	1.0	226
93	Seasonal Dynamics of CO2 Flux Across the Surface of Shallow Temperate Lakes. Ecosystems, 2012, 15, 336-347.	1.6	75
94	A community-based framework for aquatic ecosystem models. Hydrobiologia, 2012, 683, 25-34.	1.0	87
95	Short-and long term niche segregation and individual specialization of brown trout (Salmo trutta) in species poor Faroese lakes. Environmental Biology of Fishes, 2012, 93, 305-318.	0.4	12
96	Lake Restoration. Encyclopedia of Earth Sciences Series, 2012, , 455-458.	0.1	3
97	Changed cycling of P, N, Si, and DOC in Danish Lake Nordborg after aluminum treatment. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 842-856.	0.7	35
98	Using chlorophyll a and cyanobacteria in the ecological classification of lakes. Ecological Indicators, 2011, 11, 1403-1412.	2.6	64
99	Effects of warming and nutrients on sediment community respiration in shallow lakes: an outdoor mesocosm experiment. Freshwater Biology, 2011, 56, 437-447.	1.2	31
100	Filamentous green algae inhibit phytoplankton with enhanced effects when lakes get warmer. Freshwater Biology, 2011, 56, 541-553.	1.2	35
101	Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia, 2011, 663, 1-21.	1.0	242
102	Winter ecology of shallow lakes: strongest effect of fish on water clarity at high nutrient levels. Hydrobiologia, 2011, 664, 147-162.	1.0	29
103	Influence of submerged macrophytes, temperature, and nutrient loading on the development of redox potential around the sediment–water interface in lakes. Hydrobiologia, 2011, 665, 117-127.	1.0	36
104	Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 2011, 676, 279-297.	1.0	292
105	Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance?. Hydrobiologia, 2010, 646, 159-172.	1.0	42
106	Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia, 2010, 646, 73-90.	1.0	371
107	Bacterioplankton in the littoral and pelagic zones of subtropical shallow lakes. Hydrobiologia, 2010, 646, 311-326.	1.0	20
108	Rapid changes in fish community structure and habitat distribution following the precipitation of lake phosphorus with aluminium. Freshwater Biology, 2010, 55, 1036-1049.	1.2	13

#	Article	IF	CITATIONS
109	Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology, 2010, 55, 893-908.	1.2	202
110	Eutrophication and Restoration of Shallow Lakes from a Cold Temperate to a Warm Mediterranean and a (Sub)Tropical Climate. , 2010, , 91-108.		19
111	Microbial availability and degradation of dissolved organic carbon and nitrogen in two coastal areas. Estuarine, Coastal and Shelf Science, 2009, 81, 513-520.	0.9	57
112	Effects of hypolimnetic oxygenation on water quality: results from five Danish lakes. Hydrobiologia, 2009, 625, 157-172.	1.0	51
113	Site-specific chlorophyll reference conditions for lakes in Northern and Western Europe. Hydrobiologia, 2009, 633, 59-66.	1.0	29
114	Climateâ€related differences in the dominance of submerged macrophytes in shallow lakes. Global Change Biology, 2009, 15, 2503-2517.	4.2	125
115	Restoring lakes by using artificial plant beds: habitat selection of zooplankton in a clear and a turbid shallow lake. Freshwater Biology, 2009, 54, 1520-1531.	1.2	27
116	Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography, 2009, 32, 692-702.	2.1	89
117	Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations. Journal of Environmental Quality, 2009, 38, 1930-1941.	1.0	502
118	Lake Restoration by Fish Removal: Short- and Long-Term Effects in 36 Danish Lakes. Ecosystems, 2008, 11, 1291-1305.	1.6	160
119	Effects of increased temperature and nutrient enrichment on the stoichiometry of primary producers and consumers in temperate shallow lakes. Freshwater Biology, 2008, 53, 1434-1452.	1.2	57
120	A comparison of methods for calculating Catch Per Unit Effort (CPUE) of gill net catches in lakes. Fisheries Research, 2008, 93, 204-211.	0.9	32
121	Danish and other European experiences in managing shallow lakes. Lake and Reservoir Management, 2007, 23, 439-451.	0.4	25
122	A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshwater Biology, 2007, 52, 1782-1792.	1.2	86
123	Lake restoration: successes, failures and longâ€ŧerm effects. Journal of Applied Ecology, 2007, 44, 1095-1105.	1.9	458
124	Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology, 2007, 44, 1089-1094.	1.9	148
125	Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia, 2007, 581, 269-285.	1.0	362
126	Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia, 2007, 584, 239-252.	1.0	275

#	Article	IF	CITATIONS
127	Salinity Induced Regime Shift in Shallow Brackish Lagoons. Ecosystems, 2007, 10, 48-58.	1.6	110
128	Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. , 2007, , 239-252.		17
129	An empirical model describing the seasonal dynamics of phosphorus in 16 shallow eutrophic lakes after external loading reduction. Limnology and Oceanography, 2006, 51, 791-800.	1.6	64
130	Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos, 2006, 112, 227-231.	1.2	320
131	Habitat distribution of fish in late summer: changes along a nutrient gradient in Danish lakes. Ecology of Freshwater Fish, 2006, 15, 180-190.	0.7	35
132	Water Framework Directive: ecological classification of Danish lakes. Journal of Applied Ecology, 2005, 42, 616-629.	1.9	227
133	Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations?. Freshwater Biology, 2005, 50, 27-41.	1.2	146
134	Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshwater Biology, 2005, 50, 1605-1615.	1.2	114
135	Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology, 2005, 50, 1616-1627.	1.2	110
136	Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 2005, 50, 1747-1771.	1.2	1,080
137	Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction. Freshwater Biology, 2005, 50, 1589-1593.	1.2	83
138	Response of northern temperate shallow lakes to reduced nutrient loading, with special emphasis on Danish lakes. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2005, 29, 115-122.	0.1	1
139	Pond or lake: does it make any difference?. Archiv Für Hydrobiologie, 2005, 162, 143-165.	1.1	190
140	Global warming: Design of a flow-through shallow lake mesocosm climate experiment. Limnology and Oceanography: Methods, 2005, 3, 1-9.	1.0	83
141	Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. Journal of Hydrology, 2005, 304, 274-288.	2.3	264
142	Impact of fish predation on cladoceran body weight distribution and zooplankton grazing in lakes during winter. Freshwater Biology, 2004, 49, 432-447.	1.2	100
143	Cascading effect of three-spined stickleback Gasterosteus aculeatus on community composition, size, biomass and diversity of phytoplankton in shallow, eutrophic brackish lagoons. Marine Ecology - Progress Series, 2004, 279, 305-309.	0.9	21
144	Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia, 2003, 491, 321-330.	1.0	78

#	Article	IF	CITATIONS
145	Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 2003, 506-509, 135-145.	1.0	1,160
146	Response of submerged macrophytes in Danish lakes to nutrient loading reductions and biomanipulation. Hydrobiologia, 2003, 506-509, 641-649.	1.0	85
147	The Impact of Nutrient State and Lake Depth on Top-down Control in the Pelagic Zone of Lakes: A Study of 466 Lakes from the Temperate Zone to the Arctic. Ecosystems, 2003, 6, 313-325.	1.6	251
148	Does resuspension prevent a shift to a clear state in shallow lakes during reoligotrophication?. Limnology and Oceanography, 2003, 48, 1913-1919.	1.6	50
149	Climatic warming and regime shifts in lake food webs—some comments. Limnology and Oceanography, 2003, 48, 1346-1349.	1.6	45
150	Recovery from Eutrophication. , 2003, , 135-175.		11
151	Impact of three-spined stickleback Gasterosteus aculeatus on zooplankton and chl a in shallow, eutrophic, brackish lakes. Marine Ecology - Progress Series, 2003, 262, 277-284.	0.9	31
152	Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading. Aquatic Ecosystem Health and Management, 2002, 5, 19-29.	0.3	66
153	Response of phytoplankton, zooplankton, and fish to re-oligotrophication: An 11 year study of 23 Danish lakes. Aquatic Ecosystem Health and Management, 2002, 5, 31-43.	0.3	90
154	Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark. Fundamental and Applied Limnology, 2002, 153, 533-555.	0.4	40
155	Title is missing!. Hydrobiologia, 2001, 442, 329-337.	1.0	59
156	Horizontal distribution of cladocerans in arctic Greenland lakes – impact of macrophytes and fish. Hydrobiologia, 2001, 442, 107-116.	1.0	37
157	Lake restoration in Denmark. Lakes and Reservoirs: Research and Management, 2000, 5, 151-159.	0.6	72
158	Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology, 2000, 45, 201-218.	1.2	788
159	Title is missing!. Hydrobiologia, 2000, 428, 151-159.	1.0	19
160	Hypolimnetic Nitrate Treatment to Reduce Internal Phosphorus Loading in a Stratified Lake. Lake and Reservoir Management, 2000, 16, 195-204.	0.4	53
161	Internal phosphorus loading in shallow Danish lakes. , 1999, , 145-152.		46
162	Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. , 1999, , 217-231.		33

#	Article	IF	CITATIONS
163	Internal phosphorus loading in shallow Danish lakes. Hydrobiologia, 1999, 408/409, 145-152.	1.0	216
164	Title is missing!. Hydrobiologia, 1999, 408/409, 217-231.	1.0	118
165	Lake and catchment management in Denmark. Hydrobiologia, 1999, 395/396, 419-432.	1.0	109
166	Lake and catchment management in Denmark. , 1999, , 419-432.		24
167	Cascading Trophic Interactions from Fish to Bacteria and Nutrients after Reduced Sewage Loading: An 18-Year Study of a Shallow Hypertrophic Lake. Ecosystems, 1998, 1, 250-267.	1.6	140
168	Minireview: Biomanipulation as an Application of Food-Chain Theory: Constraints, Synthesis, and Recommendations for Temperate Lakes. Ecosystems, 1998, 1, 558-574.	1.6	374
169	Impact of Submerged Macrophytes on Phytoplankton in Shallow Freshwater Lakes. Ecological Studies, 1998, , 115-132.	0.4	106
170	Horizontal Migration of Zooplankton: Predator-Mediated Use of Macrophyte Habitat. Ecological Studies, 1998, , 233-239.	0.4	30
171	Macrophyte-Waterfowl Interactions: Tracking a Variable Resource and the Impact of Herbivory on Plant Growth. Ecological Studies, 1998, , 298-306.	0.4	14
172	Macrophytes and Turbidity in Brackish Lakes with Special Emphasis on the Role of Top-Down Control. Ecological Studies, 1998, , 369-377.	0.4	23
173	Role of Submerged Macrophytes for the Microbial Community and Dynamics of Dissolved Organic Carbon in Aquatic Ecosystems. Ecological Studies, 1998, , 133-148.	0.4	50
174	Changes in nitrogen retention in shallow eutrophic lakes following a decline in density of cyprinids. Fundamental and Applied Limnology, 1998, 142, 129-151.	0.4	57
175	Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. , 1997, , 151-164.		131
176	Title is missing!. Hydrobiologia, 1997, 342/343, 311-318.	1.0	67
177	Title is missing!. Hydrobiologia, 1997, 342/343, 151-164.	1.0	508
178	Title is missing!. Hydrobiologia, 1997, 342/343, 319-325.	1.0	52
179	Can Simple Empirical Equations Describe the Seasonal Dynamics of Bacterioplankton in Lakes: An Eight-Year Study in Shallow Hypertrophic and Biologically Highly Dynamic Lake SĀ,bygĀ¥rd, Denmark. Microbial Ecology, 1997, 34, 11-26.	1.4	30
180	Pike (Esox lucius L.) stocking as a biomanipulation tool 2. Effects on lower trophic levels in Lake Lyng,		10

Denmark., 1997,, 319-325.

#	Article	IF	CITATIONS
181	Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry. Water Research, 1996, 30, 992-1002.	5.3	130
182	The impact of grazing waterfowl on submerged macrophytes: In situ experiments in a shallow eutrophic lake. Aquatic Botany, 1996, 53, 73-84.	0.8	125
183	The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research, 1996, 18, 2283-2294.	0.8	174
184	Fish-induced changes in zooplankton grazing on phytoplankton and bacterioplankton: a long-term study in shallow hypertrophic Lake SÃ,bygaard. Journal of Plankton Research, 1996, 18, 1605-1625.	0.8	40
185	Impact of submerged macrophytes on fish-zooplanl phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology, 1995, 33, 255-270.	1.2	385
186	Seasonal dynamics of the mysid Neomysis integer and its predation on the copepod Eurytemora affinis in a shallow hypertrophic brackish lake. Marine Ecology - Progress Series, 1995, 127, 47-56.	0.9	42
187	Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ?. Hydrobiologia, 1994, 275-276, 15-30.	1.0	156
188	Environmental effects of introducing whitefish, Coregonus lavaretus (L.), in Lake Ring. Hydrobiologia, 1994, 275-276, 71-79.	1.0	16
189	Colonization and succession of submerged macrophytes in shallow Lake Væng during the first five years following fish manipulation. Hydrobiologia, 1994, 275-276, 233-242.	1.0	62
190	Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake S�bygaard, Denmark. Hydrobiologia, 1993, 253, 345-356.	1.0	65
191	Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake SAJbygaard, Denmark. , 1993, , 345-356.		18
192	Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arres�, Denmark. Hydrobiologia, 1992, 228, 91-99.	1.0	403
193	Resuspension in a shallow eutrophic lake. Hydrobiologia, 1992, 228, 101-109.	1.0	189
194	Nitrogen Loss and Denitrification as Studied in Relation to Reductions in Nitrogen Loading in a Shallow, Hypertrophic Lake (Lake SÃ,bygÃ¥rd, Denmark). International Review of Hydrobiology, 1992, 77, 29-42.	0.6	57
195	Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1: cross-analysis of three Danish case-studies. Hydrobiologia, 1990, 200-201, 205-218.	1.0	98
196	Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia, 1990, 200-201, 219-227.	1.0	269
197	Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia, 1990, 200-201, 229-240.	1.0	121
198	Pore water dynamics in the sediment of a shallow and hypertrophic lake. Hydrobiologia, 1990, 192, 247-258.	1.0	25

#	Article	IF	CITATIONS
199	Interactions between sediment and water in a shallow and hypertrophic lake: a study on phytoplankton collapses in Lake Sïį¼2bygïį¼2rd, Denmark. Hydrobiologia, 1990, 191, 139-148.	1.0	48
200	Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake Sïį¼2bygïį¼2rd, Denmark. Hydrobiologia, 1990, 191, 149-164.	1.0	53
201	Interactions between sediment and water in a shallow and hypertrophic lake: a study on phytoplankton collapses in Lake SÃ,bygÃ¥rd, Denmark. , 1990, , 139-148.		15
202	Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake SÃ,bygÃ¥rd, Denmark. , 1990, , 149-164.		21
203	Seasonal variations in the loosely sorbed phosphorus fraction of the sediment of a shallow and hypereutrophic lake. Environmental Geology (New York), 1988, 11, 115-121.	0.3	48
204	A 15-year Study of the Spatial Distribution of Rutilus rutilus and Perca fluviatilis in Late Summer in Two Shallow Lakes With Contrasting Trophic State. Journal of Limnology and Freshwater Fisheries Research, 0, , .	0.4	0
205	Submerged macrophytes in Danish lakes: impact of morphological and chemical factors on abundance and species richness. Hydrobiologia, 0, , 1.	1.0	5