Shigeki Miyamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3120213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Hexokinase-II Positively Regulates Glucose Starvation-Induced Autophagy through TORC1 Inhibition. Molecular Cell, 2014, 53, 521-533.	4.5	263
3	Inflammation and NLRP3 Inflammasome Activation Initiated in Response to Pressure Overload by Ca ²⁺ /Calmodulin-Dependent Protein Kinase II δ Signaling in Cardiomyocytes Are Essential for Adverse Cardiac Remodeling. Circulation, 2018, 138, 2530-2544.	1.6	200
4	Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Annals of the Rheumatic Diseases, 2018, 77, 1636-1643.	0.5	123
5	PHLPP-1 Negatively Regulates Akt Activity and Survival in the Heart. Circulation Research, 2010, 107, 476-484.	2.0	115
6	Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. Journal of Bioenergetics and Biomembranes, 2009, 41, 169-180.	1.0	90
7	Myocardin-Related Transcription Factor A and Yes-Associated Protein Exert Dual Control in G Protein-Coupled Receptor- and RhoA-Mediated Transcriptional Regulation and Cell Proliferation. Molecular and Cellular Biology, 2016, 36, 39-49.	1.1	82
8	Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. Journal of Molecular and Cellular Cardiology, 2016, 95, 31-41.	0.9	81
9	Fibroblast-Like Synoviocytes Glucose Metabolism as a Therapeutic Target in Rheumatoid Arthritis. Frontiers in Immunology, 2019, 10, 1743.	2.2	77
10	Mitophagy as a Protective Mechanism against Myocardial Stress. , 2017, 7, 1407-1424.		73
11	Autophagy and cardiac aging. Cell Death and Differentiation, 2019, 26, 653-664.	5.0	63
12	Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy in response to pressure overload. Journal of Biological Chemistry, 2019, 294, 3603-3617.	1.6	63
13	CaMKIIδ subtypes differentially regulate infarct formation following ex vivo myocardial ischemia/reperfusion through NF-I®B and TNF-α. Journal of Molecular and Cellular Cardiology, 2017, 103, 48-55.	0.9	62
14	Nuclear and mitochondrial signalling Akts in cardiomyocytes. Cardiovascular Research, 2008, 82, 272-285.	1.8	60
15	Ca2+ Dysregulation Induces Mitochondrial Depolarization and Apoptosis. Journal of Biological Chemistry, 2005, 280, 38505-38512.	1.6	57
16	Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H877-H890.	1.5	54
17	RhoA regulates Drp1 mediated mitochondrial fission through ROCK to protect cardiomyocytes. Cellular Signalling, 2018, 50, 48-57.	1.7	49
18	YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene, 2018, 37, 5492-5507.	2.6	49

Shigeki Μιγαμότο

#	Article	IF	CITATIONS
19	Mitochondrial Reprogramming Induced by CaMKIIδ Mediates Hypertrophy Decompensation. Circulation Research, 2015, 116, e28-39.	2.0	47
20	Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?. Journal of Cardiovascular Translational Research, 2010, 3, 330-343.	1.1	44
21	Nonequilibrium Reactivation of Na + Current Drives Early Afterdepolarizations in Mouse Ventricle. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 1205-1213.	2.1	42
22	SiglecF(HI) Marks Late‣tage Neutrophils of the Infarcted Heart: A Singleâ€Cell Transcriptomic Analysis of Neutrophil Diversification. Journal of the American Heart Association, 2021, 10, e019019.	1.6	41
23	Selective coupling of the S1P 3 receptor subtype to S1P-mediated RhoA activation and cardioprotection. Journal of Molecular and Cellular Cardiology, 2017, 103, 1-10.	0.9	33
24	Dissociation of mitochondrial HK-II elicits mitophagy and confers cardioprotection against ischemia. Cell Death and Disease, 2019, 10, 730.	2.7	33
25	Evaluating mitochondrial autophagy in the mouse heart. Journal of Molecular and Cellular Cardiology, 2016, 92, 134-139.	0.9	32
26	KB-R7943, a Na+/Ca2+ Exchange Inhibitor, Does Not Suppress Ischemia/Reperfusion Arrhythmias nor Digitalis Arrhythmias in Dogs. The Japanese Journal of Pharmacology, 2002, 90, 229-235.	1.2	29
27	Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. Journal of Molecular and Cellular Cardiology, 2014, 75, 152-161.	0.9	29
28	PHLPP regulates hexokinase 2-dependent glucose metabolism in colon cancer cells. Cell Death Discovery, 2017, 3, 16103.	2.0	28
29	RhoA signaling increases mitophagy and protects cardiomyocytes against ischemia by stabilizing PINK1 protein and recruiting Parkin to mitochondria. Cell Death and Differentiation, 2022, 29, 2472-2486.	5.0	12
30	Cellular redox status determines sensitivity to BNIP3-mediated cell death in cardiac myocytes. American Journal of Physiology - Cell Physiology, 2015, 308, C983-C992.	2.1	11
31	ATPase Inhibitory Factor-1 Disrupts Mitochondrial Ca2+ Handling and Promotes Pathological Cardiac Hypertrophy through CaMKIII´. International Journal of Molecular Sciences, 2021, 22, 4427.	1.8	9
32	Drp1 and Mitochondrial Autophagy Lend a Helping Hand in Adaptation to Pressure Overload. Circulation, 2016, 133, 1225-1227.	1.6	7
33	Molecular Signaling to Preserve Mitochondrial Integrity against Ischemic Stress in the Heart: Rescue or Remove Mitochondria in Danger. Cells, 2021, 10, 3330.	1.8	7
34	Histamine-induced biphasic activation of RhoA allows for persistent RhoA signaling. PLoS Biology, 2020, 18, e3000866.	2.6	6
35	RhoA induces mitophagy through PINK1 stabilization to confer cardioprotection. FASEB Journal, 2020, 34, 1-1.	0.2	1
36	Multiple Insulin Injections in Adolescent Diabetics Using a Pen-Type Syringe. Pediatrics International, 1987, 29, 368-372.	0.2	0

Shigeki Μιγαμότο

#	Article	IF	CITATIONS
37	S1P receptor localization confers selectivity for G i mediated signaling pathways. FASEB Journal, 2008, 22, 727.6.	0.2	0
38	Inducible cardiacâ€ s pecific RhoAâ€ e xpression protects against ischemia/reperfusion injury in mouse hearts. FASEB Journal, 2010, 24, 573.11.	0.2	0
39	RhoA activates protein kinase D leading to cardioprotection against ischemia/reperfusion. FASEB Journal, 2011, 25, 1085.11.	0.2	0
40	S1P induces CCN1 expression through RhoA/MRTFâ€a activation and protects cardiomyocytes against cell death. FASEB Journal, 2012, 26, 1060.4.	0.2	0
41	RhoA mediated transcriptional pathways in tumor cell growth. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY84-1.	0.0	0
42	RhoA regulates mitochondrial quality control through mitophagy and mitochondrial fission. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY84-3.	0.0	0
43	Calcium/Calmodulinâ€dependent Protein Kinase II (CaMKII) Signaling in Cardiomyocytes Initiates Inflammatory Responses Required for Adverse Cardiac Remodeling in Response to Pressure Overload FASEB Journal 2018 32 698 4	0.2	Ο