Heike Walles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3119696/publications.pdf Version: 2024-02-01

HEIVE MALLES

#	Article	IF	CITATIONS
1	Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells. Stem Cell Reports, 2017, 8, 894-906.	4.8	225
2	Integrating biological vasculature into a multi-organ-chip microsystem. Lab on A Chip, 2013, 13, 3588.	6.0	155
3	â€~Human-on-a-chip' Developments: A Translational Cutting-edge Alternative to Systemic Safety Assessment and Efficiency Evaluation of Substances in Laboratory Animals and Man?. ATLA Alternatives To Laboratory Animals, 2012, 40, 235-257.	1.0	153
4	ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models. JCI Insight, 2019, 4, .	5.0	139
5	Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 327-378.	1.5	108
6	Development of an Advanced Primary Human <i>In Vitro</i> Model of the Small Intestine. Tissue Engineering - Part C: Methods, 2016, 22, 873-883.	2.1	103
7	The physiological performance of a three-dimensional model that mimics the microenvironment of the small intestine. Biomaterials, 2011, 32, 7469-7478.	11.4	102
8	Cross-linked Collagen Hydrogel Matrix Resisting Contraction To Facilitate Full-Thickness Skin Equivalents. ACS Applied Materials & Interfaces, 2017, 9, 20417-20425.	8.0	94
9	Bioreactors in tissue engineering—principles, applications and commercial constraints. Biotechnology Journal, 2013, 8, 298-307.	3.5	87
10	In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells. PLoS ONE, 2015, 10, e0139345.	2.5	86
11	Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head. Stem Cell Research and Therapy, 2012, 3, 7.	5.5	83
12	A first vascularized skin equivalent for as an alternative to animal experimentation. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 415-422.	1.5	77
13	Stem Cell Microenvironments ―Unveiling the Secret of How Stem Cell Fate is Defined. Macromolecular Bioscience, 2010, 10, 1302-1315.	4.1	74
14	Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean <i>inÂsilico</i> model. Molecular Oncology, 2014, 8, 351-365.	4.6	74
15	Raman Spectroscopy: A Noninvasive Analysis Tool for the Discrimination of Human Skin Cells. Tissue Engineering - Part C: Methods, 2011, 17, 1027-1040.	2.1	73
16	Activation of Myenteric Glia during Acute Inflammation In Vitro and In Vivo. PLoS ONE, 2016, 11, e0151335.	2.5	69
17	EZH2 Inhibition in Ewing Sarcoma Upregulates GD2 Expression for Targeting with Gene-Modified T Cells. Molecular Therapy, 2019, 27, 933-946.	8.2	69
18	Raman spectroscopy for the nonâ€contact and nonâ€destructive monitoring of collagen damage within tissues. Journal of Biophotonics, 2012, 5, 47-56.	2.3	68

#	Article	IF	CITATIONS
19	An engineered 3D human airway mucosa model based on an SIS scaffold. Biomaterials, 2014, 35, 7355-7362.	11.4	59
20	Inhibitor of Apoptosis Protein-1 Regulates Tumor Necrosis Factor–Mediated Destruction of Intestinal Epithelial Cells. Gastroenterology, 2017, 152, 867-879.	1.3	54
21	Bone tissue engineering in osteoporosis. Maturitas, 2013, 75, 118-124.	2.4	50
22	Advanced Therapy Medicinal Products: A Guide for Bone Marrow-derived MSC Application in Bone and Cartilage Tissue Engineering. Tissue Engineering - Part B: Reviews, 2018, 24, 155-169.	4.8	50
23	A perfusion bioreactor system efficiently generates cellâ€loaded bone substitute materials for addressing critical size bone defects. Biotechnology Journal, 2015, 10, 1727-1738.	3.5	44
24	Differential Regulation of SOX9 Protein During Chondrogenesis of Induced Pluripotent Stem Cells Versus Mesenchymal Stromal Cells: A Shortcoming for Cartilage Formation. Stem Cells and Development, 2016, 25, 598-609.	2.1	44
25	Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Engineering - Part C: Methods, 2016, 22, 621-635.	2.1	42
26	Electrospun poly(d/l-lactide-co-l-lactide) hybrid matrix: a novel scaffold material for soft tissue engineering. Journal of Materials Science: Materials in Medicine, 2010, 21, 2665-2671.	3.6	41
27	Human barrier models for the in vitro assessment of drug delivery. Drug Delivery and Translational Research, 2017, 7, 217-227.	5.8	41
28	An adherent mucus layer attenuates the genotoxic effect of colibactin. Cellular Microbiology, 2018, 20, e12812.	2.1	37
29	Tissue Mimicry in Morphology and Composition Promotes Hierarchical Matrix Remodeling of Invading Stem Cells in Osteochondral and Meniscus Scaffolds. Advanced Materials, 2018, 30, e1706754.	21.0	37
30	Generation of a Three-dimensional Full Thickness Skin Equivalent and Automated Wounding. Journal of Visualized Experiments, 2015, , .	0.3	36
31	Ex vivo culture platform for assessment of cartilage repair treatment strategies. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 267-277.	1.5	30
32	Ammonia plasma treatment of polystyrene surfaces enhances proliferation of primary human mesenchymal stem cells and human endothelial cells. Biotechnology Journal, 2013, 8, 327-337.	3.5	29
33	Osteogenesis and mineralization of mesenchymal stem cells in collagen type lâ€based recombinant peptide scaffolds. Journal of Biomedical Materials Research - Part A, 2017, 105, 1856-1866.	4.0	29
34	Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools. Genes, 2017, 8, 8.	2.4	28
35	Raman Spectroscopy as a Tool for Quality and Sterility Analysis for Tissue Engineering Applications like Cartilage Transplants. International Journal of Artificial Organs, 2010, 33, 228-237.	1.4	27
36	Investigation of Migration and Differentiation of Human Mesenchymal Stem Cells on Five‣ayered Collagenous Electrospun Scaffold Mimicking Native Cartilage Structure. Advanced Healthcare Materials, 2016, 5, 2191-2198.	7.6	27

#	Article	IF	CITATIONS
37	Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix—A Pilot Study Toward Equine Meniscus Tissue Engineering. Tissue Engineering - Part A, 2017, 23, 390-402.	3.1	27
38	Non-contact discrimination of human bone marrow-derived mesenchymal stem cells and fibroblasts using Raman spectroscopy. Medical Laser Application: International Journal for Laser Treatment and Research, 2011, 26, 119-125.	0.3	26
39	Host-Integration of a Tissue-Engineered Airway Patch: Two-Year Follow-Up in a Single Patient. Tissue Engineering - Part A, 2015, 21, 573-579.	3.1	26
40	Preparation of a Three-Dimensional Full Thickness Skin Equivalent. Methods in Molecular Biology, 2017, 1612, 191-198.	0.9	26
41	NELL-1, HMGB1, and CCN2 Enhance Migration and Vasculogenesis, But Not Osteogenic Differentiation Compared to BMP2. Tissue Engineering - Part A, 2018, 24, 207-218.	3.1	26
42	Tissue Engineering of a Human 3D in vitro Tumor Test System. Journal of Visualized Experiments, 2013, , .	0.3	25
43	Alternative methods for the replacement of eye irritation testing. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 55-67.	1.5	25
44	In situ guided tissue regeneration in musculoskeletal diseases and aging. Cell and Tissue Research, 2012, 347, 725-735.	2.9	24
45	A Human <i>In Vitro</i> Model That Mimics the Renal Proximal Tubule. Tissue Engineering - Part C: Methods, 2014, 20, 599-609.	2.1	24
46	Applicability of secondâ€generation upcyte [®] human hepatocytes for use in <scp>CYP</scp> inhibition and induction studies. Pharmacology Research and Perspectives, 2015, 3, e00161.	2.4	24
47	A comparative multi-parametric in vitro model identifies the power of test conditions to predict the fibrotic tendency of a biomaterial. Scientific Reports, 2017, 7, 1689.	3.3	23
48	A versatile modular bioreactor platform for Tissue Engineering. Biotechnology Journal, 2017, 12, 1600326.	3.5	23
49	Matrix decoded – A pancreatic extracellular matrix with organ specific cues guiding human iPSC differentiation. Biomaterials, 2020, 244, 119766.	11.4	21
50	A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni. PLoS Pathogens, 2020, 16, e1008304.	4.7	21
51	An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Salmonella Infection. MBio, 2020, 11, .	4.1	21
52	A bioreactor system for interfacial culture and physiological perfusion of vascularized tissue equivalents. Biotechnology Journal, 2013, 8, 308-316.	3.5	20
53	A Combined 3D Tissue Engineered In Vitro / In Silico Lung Tumor Model for Predicting Drug Effectiveness in Specific Mutational Backgrounds. Journal of Visualized Experiments, 2016, , e53885.	0.3	20
54	Upcyte® Microvascular Endothelial Cells Repopulate Decellularized Scaffold. Tissue Engineering - Part C: Methods, 2013, 19, 57-67.	2.1	19

#	Article	IF	CITATIONS
55	Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models. PLoS ONE, 2016, 11, e0153145.	2.5	19
56	lsotropic Versus Bipolar Functionalized Biomimetic Artificial Basement Membranes and Their Evaluation in Longâ€Term Human Cell Co ulture. Advanced Healthcare Materials, 2016, 5, 1939-1948.	7.6	19
57	Biomimetic Human Tissue Model for Long-Term Study of Neisseria gonorrhoeae Infection. Frontiers in Microbiology, 2019, 10, 1740.	3.5	19
58	Reepithelialization in focus: Non-invasive monitoring of epidermal wound healing in vitro. Biosensors and Bioelectronics, 2019, 142, 111555.	10.1	19
59	An Injectable Recombinant Collagen I Peptide–Based Macroporous Microcarrier Allows Superior Expansion of C2C12 and Human Bone Marrow-Derived Mesenchymal Stromal Cells and Supports Deposition of Mineralized Matrix. Tissue Engineering - Part A, 2017, 23, 946-957.	3.1	18
60	Evaluation of a Miniaturized Biologically Vascularized Scaffold in vitro and in vivo. Scientific Reports, 2018, 8, 4719.	3.3	18
61	Oligonucleotide and Parylene Surface Coating of Polystyrene and ePTFE for Improved Endothelial Cell Attachment and Hemocompatibility. International Journal of Biomaterials, 2012, 2012, 1-14.	2.4	16
62	Follistatin Effects in Migration, Vascularization, and Osteogenesis in vitro and Bone Repair in vivo. Frontiers in Bioengineering and Biotechnology, 2019, 7, 38.	4.1	16
63	Comparative Evaluation on Impacts of Fibronectin, Heparin–Chitosan, and Albumin Coating of Bacterial Nanocellulose Small-Diameter Vascular Grafts on Endothelialization In Vitro. Nanomaterials, 2021, 11, 1952.	4.1	15
64	Generation of a Human Cardiac Patch Based on a Reendothelialized Biological Scaffold (BioVaSc). Advanced Biology, 2017, 1, 1600005.	3.0	14
65	Linking two worlds in polymer chemistry: The influence of block uniformity and dispersity in amphiphilic block copolypeptoids on their selfâ \in assembly. Biopolymers, 2019, 110, e23259.	2.4	14
66	Connecting Cancer Pathways to Tumor Engines: A Stratification Tool for Colorectal Cancer Combining Human In Vitro Tissue Models with Boolean In Silico Models. Cancers, 2020, 12, 28.	3.7	14
67	In vitro chemotaxis and tissue remodeling assays quantitatively characterize foreign body reaction. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 253-266.	1.5	14
68	Deformation strain is the main physical driver for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1474-e1479.	2.7	13
69	Development of Human Salivary Gland-Like Tissue <i>In Vitro</i> . Tissue Engineering - Part A, 2018, 24, 301-309.	3.1	13
70	Structure—Function relationships of equine menisci. PLoS ONE, 2018, 13, e0194052.	2.5	12
71	An in vitro model mimics the contact of biomaterials to blood components and the reaction of surrounding soft tissue. Acta Biomaterialia, 2019, 89, 227-241.	8.3	12
72	A coculture system composed of THP-1 cells and 3D reconstructed human epidermis to assess activation of dendritic cells by sensitizing chemicals after topical exposure. Toxicology in Vitro, 2019, 57, 62-66.	2.4	12

#	Article	IF	CITATIONS
73	A standardized method based on pigmented epidermal models evaluates sensitivity against UV-irradiation. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 390-396.	1.5	12
74	Rapid Analysis of Cell–Nanoparticle Interactions using Single ell Raman Trapping Microscopy. Angewandte Chemie - International Edition, 2018, 57, 4946-4950.	13.8	11
75	Non-contact, Label-free Monitoring of Cells and Extracellular Matrix using Raman Spectroscopy. Journal of Visualized Experiments, 2012, , .	0.3	10
76	Nanostructured TiN-Coated Electrodes for High-Sensitivity Noninvasive Characterization of in Vitro Tissue Models. ACS Applied Nano Materials, 2018, 1, 2284-2293.	5.0	10
77	Triple co-culture and perfusion bioreactor for studying the interaction between <i>Neisseria gonorrhoeae</i> and neutrophils: A novel 3D tissue model for bacterial infection and immunity. Journal of Tissue Engineering, 2021, 12, 204173142098880.	5.5	10
78	In vitro skin culture media influence the viability and inflammatory response of primary macrophages. Scientific Reports, 2021, 11, 7070.	3.3	10
79	Raman spectroscopy as a tool for quality and sterility analysis for tissue engineering applications like cartilage transplants. International Journal of Artificial Organs, 2010, 33, 228-37.	1.4	10
80	Editorial: Strategies in tissue engineering and regenerative medicine. Biotechnology Journal, 2013, 8, 278-279.	3.5	9
81	Biomimetic in vitro test system for evaluation of dental implant materials. Dental Materials, 2020, 36, 1059-1070.	3.5	9
82	Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging. PLoS ONE, 2016, 11, e0160282.	2.5	9
83	Strategies and First Advances in the Development of Prevascularized Bone Implants. Current Molecular Biology Reports, 2016, 2, 149-157.	1.6	8
84	Recombinant Collagen I Peptide Microcarriers for Cell Expansion and Their Potential Use As Cell Delivery System in a Bioreactor Model. Journal of Visualized Experiments, 2018, , .	0.3	8
85	A combined tissueâ€engineered/ inÂsilico signature tool patient stratification in lung cancer. Molecular Oncology, 2018, 12, 1264-1285.	4.6	8
86	Nanotopographical Coatings Induce an Early Phenotype-Specific Response of Primary Material-Resident M1 and M2 Macrophages. Materials, 2020, 13, 1142.	2.9	8
87	Evaluation of Cellâ€Material Interactions on Newly Designed, Printable Polymers for Tissue Engineering Applications. Advanced Engineering Materials, 2011, 13, B467.	3.5	7
88	Calcium fluoride based multifunctional nanoparticles for multimodal imaging. Beilstein Journal of Nanotechnology, 2017, 8, 1484-1493.	2.8	7
89	Altered pancreatic islet morphology and function in SGLT1 knockout mice on a glucose-deficient, fat-enriched diet. Molecular Metabolism, 2018, 13, 67-76.	6.5	7
90	Obstructed defecation—an enteric neuropathy? An exploratory study of patient samples. International Journal of Colorectal Disease, 2019, 34, 193-196.	2.2	7

#	Article	IF	CITATIONS
91	Sevoflurane Exerts Protective Effects in Murine Peritonitis-induced Sepsis via Hypoxia-inducible Factor 1α/Adenosine A2B Receptor Signaling. Anesthesiology, 2021, 135, 136-150.	2.5	7
92	A Barrier to Defend - Models of Pulmonary Barrier to Study Acute Inflammatory Diseases. Frontiers in Immunology, 0, 13, .	4.8	7
93	Interactions of donor sources and media influence the histoâ€morphological quality of fullâ€thickness skin models. Biotechnology Journal, 2016, 11, 1352-1361.	3.5	6
94	Stem cell labeling with iron oxide nanoparticles: impact of 3D culture on cell labeling maintenance. Nanomedicine, 2016, 11, 1957-1970.	3.3	6
95	Biological Models of the Lower Human Airways—Challenges and Special Requirements of Human 3D Barrier Models for Biomedical Research. Pharmaceutics, 2021, 13, 2115.	4.5	6
96	Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry. Journal of Visualized Experiments, 2018, , .	0.3	5
97	Ciclopirox olamine promotes the angiogenic response of endothelial cells and mesenchymal stem cells. Clinical Hemorheology and Microcirculation, 2019, 73, 317-328.	1.7	5
98	Physical contact between mesenchymal stem cells and endothelial precursors induces distinct signatures with relevance to the very early phase of regeneration. Journal of Cellular Biochemistry, 2018, 119, 9122-9140.	2.6	3
99	Regulatory-Compliant Validation of a Highly Sensitive qPCR for Biodistribution Assessment of Hemophilia A Patient Cells. Molecular Therapy - Methods and Clinical Development, 2020, 18, 176-188.	4.1	3
100	Rapid Analysis of Cell–Nanoparticle Interactions using Single ell Raman Trapping Microscopy. Angewandte Chemie, 2018, 130, 5040-5044.	2.0	2
101	Raman spectroscopy: a powerful tool for the non-contact discrimination of bone marrow mesenchymal stem cells and fibroblasts. , 2011, , .		1
102	Dynamic cultivation of human stem cells under physiological conditions. BMC Proceedings, 2015, 9, .	1.6	1
103	Screening Applications to Test Cellular Fitness in Transwell® Models After Nanoparticle Treatment. Methods in Molecular Biology, 2017, 1601, 111-122.	0.9	1
104	Bacterial Nanocellulose-Based Grafts for Cell Colonization Studies: An In Vitro Bioreactor Perfusion Model. Methods in Molecular Biology, 2021, , 205-222.	0.9	1
105	Development of 3D human intestinal equivalents for substance testing in microliter-scale on a multi-organ-chip. BMC Proceedings, 2013, 7, .	1.6	0
106	Track I. Cellular-, Tissue- and Bioengineering. Biomedizinische Technik, 2016, 61, 81-89.	0.8	0
107	High-Throughput Screening Techniques. , 2017, , 579-592.		0