José C S Dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3119106/publications.pdf

Version: 2024-02-01

95

all docs

92 7,047 55
papers citations h-index

95

docs citations

h-index g-index

95
3415
times ranked citing authors

77

#	Article	IF	Citations
1	Importance of the Support Properties for Immobilization or Purification of Enzymes. ChemCatChem, 2015, 7, 2413-2432.	3.7	466
2	Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology, 2015, 71, 53-57.	3.2	429
3	Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology Advances, 2019, 37, 746-770.	11.7	409
4	Novozym 435: the "perfect―lipase immobilized biocatalyst?. Catalysis Science and Technology, 2019, 9, 2380-2420.	4.1	393
5	Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. Journal of Materials Chemistry B, 2017, 5, 7461-7490.	5.8	228
6	Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chemical Record, 2016, 16, 1436-1455.	5.8	183
7	Opportunities for improving biodiesel production via lipase catalysis. Fuel, 2021, 288, 119577.	6.4	157
8	Inactivation of immobilized trypsin under dissimilar conditions produces trypsin molecules with different structures. RSC Advances, 2016, 6, 27329-27334.	3.6	139
9	Improved performance of lipases immobilized on heterofunctional octyl-glyoxyl agarose beads. RSC Advances, 2015, 5, 11212-11222.	3.6	129
10	Novel nanohybrid biocatalyst: application in the kinetic resolution of secondary alcohols. Journal of Materials Science, 2018, 53, 14121-14137.	3.7	128
11	Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochemistry, 2018, 75, 99-120.	3.7	120
12	Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions. Food Hydrocolloids, 2012, 27, 324-331.	10.7	113
13	Chemoenzymatic synthesis of (S)-Pindolol using lipases. Applied Catalysis A: General, 2017, 546, 7-14.	4.3	110
14	Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Advances, 2015, 5, 20639-20649.	3.6	104
15	Kinetic resolution of drug intermediates catalyzed by lipase B from <i>Candida antarctica</i> immobilized on immobeadâ€350. Biotechnology Progress, 2018, 34, 878-889.	2.6	104
16	Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. International Journal of Biological Macromolecules, 2019, 130, 798-809.	7. 5	103
17	Effect of chemical modification of Novozym 435 on its performance in the alcoholysis of camelina oil. Biochemical Engineering Journal, 2016, 111, 75-86.	3.6	94
18	Bovine trypsin immobilization on agarose activated with divinylsulfone: Improved activity and stability via multipoint covalent attachment. Journal of Molecular Catalysis B: Enzymatic, 2015, 117, 38-44.	1.8	93

#	Article	IF	Citations
19	Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy?. International Journal of Biological Macromolecules, 2021, 181, 1124-1170.	7.5	93
20	Evaluation of divinylsulfone activated agarose to immobilize lipases and to tune their catalytic properties. Process Biochemistry, 2015, 50, 918-927.	3.7	91
21	Easy stabilization of interfacially activated lipases using heterofunctional divinyl sulfone activated-octyl agarose beads. Modulation of the immobilized enzymes by altering their nanoenvironment. Process Biochemistry, 2016, 51, 865-874.	3.7	88
22	Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support. International Journal of Biological Macromolecules, 2019, 134, 936-945.	7.5	88
23	Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?. Renewable Energy, 2021, 164, 1566-1587.	8.9	88
24	An overview on the conversion of glycerol to valueâ€added industrial products via chemical and biochemical routes. Biotechnology and Applied Biochemistry, 2022, 69, 2794-2818.	3.1	87
25	Immobilization of Lipase A from Candida antarctica onto Chitosan-Coated Magnetic Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 4018.	4.1	86
26	Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia: Application to the kinetic resolution of myo -inositol derivatives. Process Biochemistry, 2015, 50, 1557-1564.	3.7	81
27	Current Status and Future Perspectives of Supports and Protocols for Enzyme Immobilization. Catalysts, 2021, 11, 1222.	3.5	81
28	Stabilizing effects of cations on lipases depend on the immobilization protocol. RSC Advances, 2015, 5, 83868-83875.	3.6	79
29	Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochemical Engineering Journal, 2017, 125, 104-115.	3.6	79
30	Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya sp.) via RSM. Catalysts, 2020, 10, 414.	3 . 5	79
31	Biotechnological relevance of the lipase A from Candida antarctica. Catalysis Today, 2021, 362, 141-154.	4.4	78
32	Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. Algal Research, 2022, 62, 102616.	4.6	77
33	Design of a core–shell support to improve lipase features by immobilization. RSC Advances, 2016, 6, 62814-62824.	3.6	76
34	A new heterofunctional support for enzyme immobilization: PEI functionalized Fe3O4 MNPs activated with divinyl sulfone. Application in the immobilization of lipase from Thermomyces lanuginosus. Enzyme and Microbial Technology, 2020, 138, 109560.	3.2	76
35	Tuning the catalytic properties of lipases immobilized on divinylsulfone activated agarose by altering its nanoenvironment. Enzyme and Microbial Technology, 2015, 77, 1-7.	3.2	75
36	Operational stabilities of different chemical derivatives of Novozym 435 in an alcoholysis reaction. Enzyme and Microbial Technology, 2016, 90, 35-44.	3.2	75

#	Article	IF	CITATIONS
37	Operational and Thermal Stability Analysis of Thermomyces lanuginosus Lipase Covalently Immobilized onto Modified Chitosan Supports. Applied Biochemistry and Biotechnology, 2018, 184, 182-196.	2.9	74
38	Immobilization of lipases on glyoxyl–octyl supports: Improved stability and reactivation strategies. Process Biochemistry, 2015, 50, 1211-1217.	3.7	73
39	Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnology Reports (Amsterdam, Netherlands), 2017, 14, 16-26.	4.4	72
40	Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: Characterization, kinetic resolution application, and docking studies. Chemical Engineering Research and Design, 2022, 177, 223-244.	5.6	72
41	Stabilizing hyperactivated lecitase structures through physical treatment with ionic polymers. Process Biochemistry, 2014, 49, 1511-1515.	3.7	70
42	Versatility of divinylsulfone supports permits the tuning of CALB properties during its immobilization. RSC Advances, 2015, 5, 35801-35810.	3.6	70
43	Reversible immobilization of lipases on octyl-glutamic agarose beads: A mixed adsorption that reinforces enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 2016, 128, 10-18.	1.8	70
44	Lipase From Rhizomucor miehei Immobilized on Magnetic Nanoparticles: Performance in Fatty Acid Ethyl Ester (FAEE) Optimized Production by the Taguchi Method. Frontiers in Bioengineering and Biotechnology, 2020, 8, 693.	4.1	70
45	Chemical amination of lipases improves their immobilization on octyl-glyoxyl agarose beads. Catalysis Today, 2016, 259, 107-118.	4.4	68
46	Strategies of covalent immobilization of a recombinant Candida antarctica lipase B on pore-expanded SBA-15 and its application in the kinetic resolution of (R, S)-Phenylethyl acetate. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, 246-258.	1.8	67
47	Improved immobilization and stabilization of lipase from Rhizomucor miehei on octyl-glyoxyl agarose beads by using CaCl2. Process Biochemistry, 2016, 51, 48-52.	3.7	67
48	Efficient biotechnological synthesis of flavor esters using a low-cost biocatalyst with immobilized Rhizomucor miehei lipase. Molecular Biology Reports, 2019, 46, 597-608.	2.3	66
49	Tuning of Lecitase features via solid-phase chemical modification: Effect of the immobilization protocol. Process Biochemistry, 2014, 49, 604-616.	3.7	65
50	Cashew apple bagasse as a support for the immobilization of lipase B from Candida antarctica: Application to the chemoenzymatic production of (R)-Indanol. Journal of Molecular Catalysis B: Enzymatic, 2016, 130, 58-69.	1.8	63
51	Synthesis of Benzyl Acetate Catalyzed by Lipase Immobilized in Nontoxic Chitosan-Polyphosphate Beads. Molecules, 2017, 22, 2165.	3.8	63
52	Evaluation of Styrene-Divinylbenzene Beads as a Support to Immobilize Lipases. Molecules, 2014, 19, 7629-7645.	3.8	62
53	Immobilization of Proteins in Poly-Styrene-Divinylbenzene Matrices: Functional Properties and Applications. Current Organic Chemistry, 2015, 19, 1707-1718.	1.6	62
54	Improving the catalytic properties of immobilized Lecitase via physical coating with ionic polymers. Enzyme and Microbial Technology, 2014, 60, 1-8.	3.2	61

#	Article	IF	CITATIONS
55	Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption. Molecules, 2016, 21, 646.	3.8	58
56	Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts' Properties of Rhizomucor miehei Lipase onto Chitosan. Applied Biochemistry and Biotechnology, 2018, 184, 1263-1285.	2.9	58
57	Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from Candida antarctica Immobilized onto Magnetic Nanoparticles. Improvement of Biocatalysts' Performance under Ultrasonic Irradiation. International Journal of Molecular Sciences, 2019, 20, 5807.	4.1	58
58	The Chemistry and Applications of Metal–Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Molecules, 2022, 27, 4529.	3.8	57
59	Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. International Journal of Biological Macromolecules, 2019, 141, 313-324.	7.5	56
60	Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess and Biosystems Engineering, 2020, 43, 2253-2268.	3.4	54
61	Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. Electrochem, 2021, 2, 149-184.	3.3	48
62	Reactivation of lipases by the unfolding and refolding of covalently immobilized biocatalysts. RSC Advances, 2015, 5, 55588-55594.	3.6	43
63	Lecitase ultra: A phospholipase with great potential in biocatalysis. Molecular Catalysis, 2019, 473, 110405.	2.0	43
64	DESIGN OF IMMOBILIZED ENZYME BIOCATALYSTS: DRAWBACKS AND OPPORTUNITIES. Quimica Nova, 2019, , .	0.3	39
65	Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts, 2020, 10, 891.	3.5	35
66	Lipase Cocktail for Optimized Biodiesel Production of Free Fatty Acids from Residual Chicken Oil. Catalysis Letters, 2021, 151, 1155-1166.	2.6	31
67	Modulation of Lecitase properties via immobilization on differently activated Immobead-350: Stabilization and inversion of enantiospecificity. Process Biochemistry, 2019, 87, 128-137.	3.7	29
68	Lipases Immobilized onto Nanomaterials as Biocatalysts in Biodiesel Production: Scientific Context, Challenges, and Opportunities. Revista Virtual De Quimica, 2021, 13, 875-891.	0.4	29
69	A Comprehensive Review on the Use of Metal–Organic Frameworks (MOFs) Coupled with Enzymes as Biosensors. Electrochem, 2022, 3, 89-113.	3.3	29
70	Immobilization of Lipases on Heterofunctional Octyl–Glyoxyl Agarose Supports. Methods in Enzymology, 2016, 571, 73-85.	1.0	28
71	Sonohydrolysis using an enzymatic cocktail in the preparation of free fatty acid. 3 Biotech, 2020, 10, 254.	2.2	28
72	Chemical modification of clay nanocomposites for the improvement of the catalytic properties of Lipase A from Candida antarctica. Process Biochemistry, 2022, 120, 1-14.	3.7	28

#	Article	IF	Citations
73	Improvement of enzymatic activity and stability of lipase A from Candida antartica onto halloysite nanotubes with Taguchi method for optimized immobilization. Applied Clay Science, 2022, 228, 106634.	5.2	26
74	Understanding the Biocatalytic Potential of Lipase from Rhizopus chinensis. Biointerface Research in Applied Chemistry, 2021, 12, 4230-4260.	1.0	21
75	The use of new hydrogel microcapsules in coconut juice as biocatalyst system for the reaction of quinine. Industrial Crops and Products, 2020, 145, 111890.	5. 2	20
76	Preparation, Characterization, and Enantioselectivity of Polyacrylate Microcapsules Entrapping Ananas comosus Extract. Revista Virtual De Quimica, 2021, 13, 1319-1329.	0.4	8
77	IMPROVING THE CATALYTIC FEATURES OF THE LIPASE FROM Rhizomucor miehei IMMOBILIZED ON CHITOSAN-BASED HYBRID MATRICES BY ALTERING THE CHEMICAL ACTIVATION CONDITIONS. Quimica Nova, 0, , .	0.3	8
78	Editorial: Designing Carrier-Free Immobilized Enzymes for Biocatalysis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	8
79	Chitosan Nanoparticle: Alternative for Sustainable Agriculture. Materials Horizons, 2021, , 95-132.	0.6	6
80	Enzymatic Biocatalyst using enzymes from Pineapple (Ananas comosus) Peel Immobilized in Hydrogel Beads. Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 0, 23, 32.	0.0	3
81	Enzymatic Reactions and Biocatalytic Processes. , 2019, , .		1
82	Enzymatic synthesis of isoniazid using chitosan-based and octyl-silica-based systems. New Biotechnology, 2012, 29, S107.	4.4	0
83	A study of the factors that contribute to the corrosion process in produced water samples: a multivariate analysis approach., 0, 220, 73-82.		0
84	Nanotechnology Systems for Biofuels Production. Materials Horizons, 2021, , 445-471.	0.6	0
85	MODIFICAÇÃO QUÃMICA DE LECITASE ULTRA EM FASE SÓLIDA: EFEITO DO PROTOCOLO DE IMOBILIZAÇÃ (um espaço) (um espaço). , 0, , .	0	0
86	ESTABILIZAÇÃO DA FORMA ABERTA DE LECITASE ATRAVÉS DA MODIFICAÇÃO FÃSICA COM POLÃMEROS IÔNICOS. , 0, , .	;	0
87	IMOBILIZAÇÃO DE LIPASE DE Aspergillus niger EM BAGAÇO DE CAJU PRÉ- TRATADO COM PERÓXIDO DE HIDROGÊNIO ALCALINO. , 0, , .		0
88	USO DE POLÂMEROS IÃ"NICOS PARA ESTABILIZAR ESTRUTURAS HIPERATIVADAS DE LECITASE ULTRA., 0,,.		0
89	AGAROSE ATIVADA COM DIVINILSULFONA: UM SUPORTE ADEQUADO PARA PROMOVER UMA INTENÇA LIGAÇÃO COVALENTE MULTPONTUAL COM TRIPSINA E QUIMOTRIPSINA. , 0, , .		0
90	DETERMINAÇÃO DA ATIVIDADE DE ESTERIFICAÇÃO DE LIPASES COMERCIAIS., 2019, , .		0

#	Article	IF	CITATIONS
91	AVALIAĂ‡ĂƒO DE PARĂ,METROS TERMODINĂ,MICOS NA PRODUĂ‡ĂƒO ENZIMĂŦICA DE ÉSTERES ETĂŁICOS LECITASE ULTRA. , 2019, , .	СОМ	O
92	A new raw material in the production of biodiesel: purple pinion seeds Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 0, 23, 25.	0.0	0