Ai-Hua Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3119100/publications.pdf

Version: 2024-02-01

105 4,338 35 62 papers citations h-index g-index

105 105 105 4554 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. Journal of Materials Chemistry A, 2017, 5, 266-274.	5.2	341
2	Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chemical Engineering Journal, 2017, 313, 1623-1632.	6.6	181
3	Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors. Applied Surface Science, 2019, 469, 487-494.	3.1	179
4	Facile synthesis of a metal–organic framework-derived Mn ₂ O ₃ nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes. Journal of Materials Chemistry A, 2016, 4, 8283-8290.	5.2	167
5	Systematic Study of Effect on Enhancing Specific Capacity and Electrochemical Behaviors of Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1701330.	10.2	154
6	Cyanometallic framework-derived hierarchical Co3O4-NiO/graphene foam as high-performance binder-free electrodes for supercapacitors. Chemical Engineering Journal, 2019, 369, 57-63.	6.6	142
7	Controlled pyrolysis of MIL-88A to Fe ₂ O ₃ @C nanocomposites with varied morphologies and phases for advanced lithium storage. Journal of Materials Chemistry A, 2017, 5, 25562-25573.	5.2	132
8	MoS2 supported on MOF-derived carbon with core-shell structure as efficient electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 20538-20545.	3.8	128
9	Graphene aerogel encapsulated Fe-Co oxide nanocubes derived from Prussian blue analogue as integrated anode with enhanced Li-ion storage properties. Applied Surface Science, 2019, 471, 745-752.	3.1	127
10	Nickel@Nitrogenâ€Doped Carbon@MoS ₂ Nanosheets: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. Small, 2019, 15, e1804545.	5.2	122
11	Construction of unique heterogeneous cobalt–manganese oxide porous microspheres for the assembly of long-cycle and high-rate lithium ion battery anodes. Journal of Materials Chemistry A, 2019, 7, 6149-6160.	5.2	96
12	High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Research, 2020, 13, 2862-2868.	5 . 8	94
13	Facile synthesis of metal-organic framework-derived Co3O4 with different morphologies coated graphene foam as integrated anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 768, 1049-1057.	2.8	86
14	Core-shell structured ZnCo/NC@MoS2 electrocatalysts for tunable hydrogen evolution reaction. Electrochimica Acta, 2020, 331, 135445.	2.6	86
15	MOFâ€Derived CuS@Cuâ€BTC Composites as Highâ€Performance Anodes for Lithiumâ€Ion Batteries. Small, 2019 15, e1903522.	⁹ 5.2	85
16	Cyanide-metal framework derived CoMoO ₄ /Co ₃ O ₄ hollow porous octahedrons as advanced anodes for high performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 1048-1056.	5.2	81
17	Fully catalytic upgrading synthesis of 5-Ethoxymethylfurfural from biomass-derived 5-Hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid. Applied Catalysis B: Environmental, 2019, 256, 117786.	10.8	80
18	Facile synthesis of MOF-derived hollow NiO microspheres integrated with graphene foam for improved lithium-storage properties. Journal of Alloys and Compounds, 2019, 784, 869-876.	2.8	76

#	Article	IF	CITATIONS
19	Biomorphic CoNC/CoO <i>_×</i> Composite Derived from Natural Chloroplasts as Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2019, 15, e1804855.	5.2	72
20	Naphtho[b]-fused BODIPYs: one pot Suzuki–Miyaura–Knoevenagel synthesis and photophysical properties. Chemical Communications, 2017, 53, 6621-6624.	2.2	65
21	Prussian blue nanocubes supported on graphene foam as superior binder-free anode of lithium-ion batteries. Journal of Alloys and Compounds, 2018, 749, 811-817.	2.8	60
22	B- and N-embedded color-tunable phosphorescent iridium complexes and B–N Lewis adducts with intriguing structural and optical changes. Chemical Science, 2019, 10, 3257-3263.	3.7	53
23	Ultrathin Ni-Al layered double hydroxide nanosheets with enhanced supercapacitor performance. Ceramics International, 2017, 43, 14395-14400.	2.3	52
24	Design and self-assembly of metal-organic framework-derived porous Co3O4 hierarchical structures for lithium-ion batteries. Ceramics International, 2016, 42, 5160-5170.	2.3	49
25	<i>In situ</i> Surface Chemistry Engineering of Cobalt-Sulfide Nanosheets for Improved Oxygen Evolution Activity. ACS Applied Energy Materials, 2019, 2, 4439-4449.	2.5	49
26	Growth of MoS2 nanosheets on M@N-doped carbon particles (MÂ=ÂCo, Fe or CoFe Alloy) as an efficient electrocatalyst toward hydrogen evolution reaction. Chemical Engineering Journal, 2022, 428, 132126.	6.6	49
27	Yolk-shelled ZnO NiO microspheres derived from tetracyanide-metallic-frameworks as bifunctional electrodes for high-performance lithium-ion batteries and supercapacitors. Journal of Power Sources, 2019, 421, 41-49.	4.0	48
28	Metal-organic framework-derived Co3O4 covered by MoS2 nanosheets for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 744, 220-227.	2.8	46
29	Controllable Sandwiching of Reduced Graphene Oxide in Hierarchical Defectâ€Rich MoS ₂ Ultrathin Nanosheets with Expanded Interlayer Spacing for Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1801093.	1.9	45
30	Porous carbon derived from metal–organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries. RSC Advances, 2019, 9, 9577-9583.	1.7	45
31	Silk-inspired stretchable fiber-shaped supercapacitors with ultrahigh volumetric capacitance and energy density for wearable electronics. Chemical Engineering Journal, 2020, 386, 124024.	6.6	45
32	Boosted capture of volatile organic compounds in adsorption capacity and selectivity by rationally exploiting defect-engineering of UiO-66(Zr). Separation and Purification Technology, 2021, 266, 118087.	3.9	41
33	Co ₃ O ₄ nanostructures with a high rate performance as anode materials for lithium-ion batteries, prepared via book-like cobalt–organic frameworks. CrystEngComm, 2014, 16, 10227-10234.	1.3	40
34	A mononuclear five-coordinate $Co(\langle scp \rangle ii \langle scp \rangle)$ single molecule magnet with a spin crossover between the $\langle i \rangle S \langle i \rangle = 1/2$ and 3/2 states. Dalton Transactions, 2018, 47, 16596-16602.	1.6	39
35	Local epitaxial growth of Au-Rh core-shell star-shaped decahedra: A case for studying electronic and ensemble effects in hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263, 118255.	10.8	37
36	2D conductive MOFs with sufficient redox sites: reduced graphene oxide/Cu-benzenehexathiolate composites as high capacity anode materials for lithium-ion batteries. Nanoscale, 2021, 13, 7751-7760.	2.8	37

#	Article	IF	Citations
37	Fabrication of GeO2 microspheres /hierarchical porous N-doped carbon with superior cyclic stability for Li-ion batteries. Journal of Solid State Chemistry, 2020, 286, 121303.	1.4	36
38	Slow magnetic relaxation in luminescent mononuclear dysprosium(<scp>iii</scp>) and erbium(<scp>iii</scp>) pentanitrate complexes with the same LnO ₁₀ coordination geometry. Dalton Transactions, 2017, 46, 15812-15818.	1.6	35
39	Multiple Active Sites: Lithium Storage Mechanism of Cuâ€TCNQ as an Anode Material for Lithiumâ€lon Batteries. Chemistry - an Asian Journal, 2019, 14, 4289-4295.	1.7	34
40	Thermal Synthesis of FeNi@Nitrogen-Doped Graphene Dispersed on Nitrogen-Doped Carbon Matrix as an Excellent Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 4075-4083.	2.5	34
41	A capped trigonal prismatic cobalt(<scp>ii</scp>) complex as a structural archetype for single-ion magnets. Dalton Transactions, 2020, 49, 2063-2067.	1.6	32
42	Slow magnetic relaxation influenced by change of symmetry from ideal <i>C</i> _i to <i>D</i> _{3d} in cobalt(<scp>ii</scp>)-based single-ion magnets. Dalton Transactions, 2018, 47, 2506-2510.	1.6	31
43	A plant-mediated synthesis of nanostructured hydroxyapatite for biomedical applications: a review. RSC Advances, 2020, 10, 40923-40939.	1.7	30
44	Record-high capture of volatile benzene and toluene enabled by activator implant-optimized banana peel-derived engineering carbonaceous adsorbents. Environment International, 2020, 143, 105774.	4.8	30
45	In Situ Derived Electrocatalysts from Fe–Co Sulfides with Enhanced Activity toward Oxygen Evolution. Industrial & Engineering Chemistry Research, 2019, 58, 18976-18985.	1.8	29
46	Visible-Light-Responsive Nanofibrous α-Fe ₂ O ₃ Integrated FeOx Cluster-Templated Siliceous Microsheets for Rapid Catalytic Phenol Removal and Enhanced Antibacterial Activity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19803-19815.	4.0	28
47	Cyanometallic frameworks derived hierarchical porous Fe 2 O 3 /NiO microflowers with excellent lithium-storage property. Journal of Alloys and Compounds, 2017, 698, 469-475.	2.8	26
48	A Singleâ€Anionâ€Based Redâ€Emitting Cationic Diiridium(III) Complex Bearing a Pyrimidineâ€Based Bridging Ligand for Oxygen Sensing. European Journal of Inorganic Chemistry, 2018, 2018, 1131-1136.	1.0	26
49	Bimetallic metal-organic framework derived Sn-based nanocomposites for high-performance lithium storage. Electrochimica Acta, 2019, 323, 134855.	2.6	25
50	An eight-coordinate ytterbium complex with a hexagonal bipyramid geometry exhibiting field-induced single-ion magnet behaviour. Dalton Transactions, 2019, 48, 5621-5626.	1.6	25
51	Ni3S2 nanostrips@FeNi-NiFe2O4 nanoparticles embedded in N-doped carbon microsphere: An improved electrocatalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 1-10.	5.0	25
52	One step in-situ synthesis of Ni3S2/Fe2O3/N-doped carbon composites on Ni foam as an efficient electrocatalyst for overall water splitting. Applied Surface Science, 2020, 527, 146918.	3.1	24
53	Cyanide-metal framework derived porous MoO3-Fe2O3 hybrid micro- octahedrons as superior anode for lithium-ion batteries. Chemical Engineering Journal, 2021, 426, 130347.	6.6	24
54	Self-templated formation of hierarchically yolk–shell-structured ZnS/NC dodecahedra with superior lithium storage properties. Nanoscale, 2021, 13, 1988-1996.	2.8	24

#	Article	IF	CITATIONS
55	Nitrogen-doped carbon composites derived from 7,7,8,8-tetracyanoquinodimethane-based metal–organic frameworks for supercapacitors and lithium-ion batteries. RSC Advances, 2017, 7, 25182-25190.	1.7	23
56	Interfacial engineering coupling with tailored oxygen vacancies in Co2Mn2O4 spinel hollow nanofiber for catalytic phenol removal. Journal of Hazardous Materials, 2022, 424, 127647.	6.5	23
57	Synthesis of Tostadasâ€Shaped Metalâ€Organic Frameworks for Remitting Capacity Fading of Liâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	23
58	Structural Conversion and Magnetic Studies of Low-Dimensional LnIII/MoV/IV(CN)8 (Ln = Gd–Lu) Systems: From Helical Chain to Trinuclear Cluster. Crystal Growth and Design, 2016, 16, 1708-1716.	1.4	21
59	Structure, magnetic anisotropy and relaxation behavior of seven-coordinate Co(ii) single-ion magnets perturbed by counter-anions. Dalton Transactions, 2020, 49, 7620-7627.	1.6	21
60	Excellent porous environmental nanocatalyst: tactically integrating size-confined highly active MnO _x in nanospaces of mesopores enables the promotive catalytic degradation efficiency of organic contaminants. New Journal of Chemistry, 2019, 43, 19020-19034.	1.4	20
61	Nanomixture of 0-D ternary metal oxides (TiO2â \in " SnO2â \in "Al2O3) cooperating with 1-D hydroxyapatite (HAp) nanorods for RhB removal from synthetic wastewater and hydrogen evolution via water splitting. Chemosphere, 2021, 273, 128575.	4.2	20
62	Three Types of Chargedâ€Ligandâ€Based Blue–Green to Nearâ€Infrared Emitting Iridium Complexes: Synthesis, Structures, and Organic Lightâ€Emitting Diode Application. Advanced Optical Materials, 2021, 9, 2002060.	3.6	19
63	N, S, O Self-Doped Porous Carbon Nanoarchitectonics Derived from Pinecone with Outstanding Supercapacitance Performances. Journal of Nanoscience and Nanotechnology, 2020, 20, 2728-2735.	0.9	18
64	Porous ZnO/NiO Microspherical Structures Prepared by Thermolysis of Heterobimetallic Metal-Organic Framework as Supercapacitor Electrodes. Journal of Nanoscience and Nanotechnology, 2017, 17, 2571-2577.	0.9	17
65	Submicron Co ₉ S ₈ /CoS/Carbon Spheres Derived from Bacteria for the Electrocatalytic Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 4571-4575.	1.7	17
66	Facile Fabrication of Amorphous Niâ^P Supported on a 3D Biocarbon Skeleton as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 3071-3076.	1.7	17
67	Ion-templated fabrication of Pt-Cu alloy octahedra with controlled compositions for electrochemical detection of H2O2. Journal of Alloys and Compounds, 2019, 788, 1334-1340.	2.8	17
68	Construction of CoS2-N-C sheets anchored on 3D graphene network for lithium storage performances. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	16
69	Tuning the Equatorial Negative Charge in Hexagonal Bipyramidal Dysprosium(III) Single-Ion Magnets to Improve the Magnetic Behavior. Inorganic Chemistry, 2022, 61, 3664-3673.	1.9	16
70	Slow magnetic relaxation in two octahedral cobalt(II) complexes with positive axial anisotropy. Inorganica Chimica Acta, 2018, 479, 113-119.	1.2	15
71	Reductive Câ^'N Coupling of Nitroarenes: Heterogenization of MoO ₃ Catalyst by Confinement in Silica. ChemSusChem, 2021, 14, 3413-3421.	3.6	15
72	FeNi/NiFe2O4 hybrids confined in N-doped carbon sponge derived from Hofmann-type MOFs for oxygen electrocatalysis. Applied Surface Science, 2022, 596, 153522.	3.1	15

#	Article	IF	CITATIONS
73	B- and N-Embedded π-Conjugation Units Tuning Intermolecular Interactions and Optical Properties of Platinum(II) Complexes. Inorganic Chemistry, 2021, 60, 525-534.	1.9	14
74	Seed-mediated synthesis of Au@PtCu nanostars with rich twin defects as efficient and stable electrocatalysts for methanol oxidation reaction. RSC Advances, 2019, 9, 35887-35894.	1.7	13
75	An oxygen-bridged triarylamine polycyclic unit based tris-cyclometalated heteroleptic iridium(<scp>iii</scp>) complex: correlation between the structure and photophysical properties. Dalton Transactions, 2019, 48, 4596-4601.	1.6	12
76	Engineering Adsorption Case for Efficient Capture of VOCs Using Biomassâ€based Corncobs via a Carbonized Strategy. ChemistrySelect, 2020, 5, 9162-9169.	0.7	12
77	Polymer-assisted synthesis and applications of hydroxyapatite (HAp) anchored nitrogen-doped 3D graphene foam-based nanostructured ceramic framework. RSC Advances, 2020, 10, 17918-17929.	1.7	12
78	Combining two active states of FeOx in-situ in molecular sieve to deliver enhanced catalytic activity via creating special configuration and synergy. Journal of Alloys and Compounds, 2020, 844, 156137.	2.8	12
79	Enabling room-temperature reductive C–N coupling of nitroarenes: combining homogeneous and heterogeneous synergetic catalyses mediated by light. Green Chemistry, 2022, 24, 4012-4025.	4.6	12
80	Tuning the Photophysical and Excited State Properties of Phosphorescent Iridium(III) Complexes by Polycyclic Unit Substitution. ChemistryOpen, 2019, 8, 339-343.	0.9	11
81	Strategies to Optimize the Lithium Storage Capability of the Metalâ€Organic Framework Copperâ€1,3,5â€Trimesic Acid (Cuâ€BTC). ChemElectroChem, 2020, 7, 4003-4009.	1.7	11
82	Three types of charged ligand-based neutral phosphorescent iridium(<scp>iii</scp>) complexes featuring <i>nido</i> -carborane: synthesis, structures, and solution processed organic light-emitting diode applications. Dalton Transactions, 2021, 50, 16304-16310.	1.6	11
83	Loading of individual Se-doped Fe ₂ O ₃ -decorated Ni/NiO particles on carbon cloth: facile synthesis and efficient electrocatalysis for the oxygen evolution reaction. Dalton Transactions, 2020, 49, 15682-15692.	1.6	10
84	Three Types of Charged Ligands Based Carboxyl-Containing Iridium(III) Complexes: Structures, Photophysics, and Solution Processed OLED Application. Inorganic Chemistry, 2021, 60, 17699-17704.	1.9	10
85	Hierarchical laminated Al2O3 in-situ integrated with high-dispersed Co3O4 for improved toluene catalytic combustion. Advanced Powder Technology, 2022, 33, 103377.	2.0	10
86	Deep-Red/Near-Infrared to Blue-Green Phosphorescent Iridium(III) Complexes Featuring Three Differently Charged (0, â°1, and â°2) Ligands: Structures, Photophysics, and Organic Light-Emitting Diode Application. Inorganic Chemistry, 2022, 61, 10548-10556.	1.9	10
87	A Cu-NHC based phosphorescent binuclear iridium(iii)/copper(i) complex with an unpredictable near-linear two-coordination mode. Dalton Transactions, 2018, 47, 17299-17303.	1.6	9
88	Dualâ€Templating Approaches to Soybeans Milkâ€Derived Hierarchically Porous Heteroatomâ€Doped Carbon Materials for Lithiumâ€Ion Batteries. ChemistryOpen, 2020, 9, 582-587.	0.9	9
89	Hierarchical multi-yolk-shell copper oxide@copper-1, 3, 5-benzenetricarboxylate as an ultrastable anode for lithium ion batteries. Journal of Colloid and Interface Science, 2022, 617, 568-577.	5.0	9
90	Facile synthesis of novel tungsten-based hierarchical core-shell composite for ultrahigh volumetric lithium storage. Journal of Colloid and Interface Science, 2020, 567, 28-36.	5.0	8

#	Article	IF	CITATIONS
91	Constructing Cu2O@Ni-Al LDH core-shell structure for high performance supercapacitor electrode material. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	7
92	Comparison of Structural and Optical Properties for Nâ€Embedded Polycyclic and Nonâ€Embedded Cationic Phosphorescent Iridium(III) Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 1343-1348.	1.0	7
93	Facile development and structural investigations of HAp and HAp/Ta nanostructures: Photocatalytic activity against Turq blue GL dye. Materials Research Express, 2020, 7, 015012.	0.8	7
94	Observation of field-induced single-ion magnet behavior in an octahedral dysprosium complex with a strong ligand field. New Journal of Chemistry, 2021, 45, 2404-2409.	1.4	7
95	CoS ₂ Nanoparticles Embedded in Twoâ€Dimensional Sheetâ€Shaped Nâ€Doped Carbon for Sodium Storage. European Journal of Inorganic Chemistry, 2021, 2021, 1536-1541.	1.0	5
96	NiFeâ€NiFe 2 O 4 /rGO composites: Controlled preparation and superior lithium storage properties. Journal of the American Ceramic Society, 2021, 104, 6696.	1.9	5
97	Tuning the ligand field in seven-coordinate Dy(<scp>iii</scp>) complexes to perturb single-ion magnet behavior. New Journal of Chemistry, 2021, 45, 8591-8596.	1.4	4
98	Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent. Chinese Journal of Chemical Engineering, 2022, 46, 194-206.	1.7	4
99	A cyanometallate- and carbonate-bridged dysprosium chain complex with a pentadentate macrocyclic ligand: synthesis, structure, and magnetism. New Journal of Chemistry, 2022, 46, 7892-7898.	1.4	4
100	Synthesis and Photophysical Properties of Naphtho[b]- and Indeno[b]-fused BODIPYs. Dyes and Pigments, 2020, 183, 108676.	2.0	3
101	A New Facial Homoleptic Trisâ€cyclometalated Iridium(III) Complex with Oxygenâ€bridged Triarylamine Units. ChemistrySelect, 2020, 5, 4592-4595.	0.7	3
102	Slow magnetic relaxation in dinuclear Co(III)-Co(II) complexes containing a five-coordinated Co(II) centre with easy-axis anisotropy. Dalton Transactions, 2022, , .	1.6	3
103	Improve the Conductivity of CuBTC by inâ€situ Reduction to Coreâ€5hell CuTCNQ@CuBTC. ChemistrySelect, 2020, 5, 15049-15054.	0.7	2
104	Oxygenâ∈Bridged Triphenylamine Units Tuning the Photophysical Properties of Classical Phosphorescent Iridium(III) Complex. ChemistrySelect, 2021, 6, 1777-1781.	0.7	2
105	An Orangeâ€Emitting Phosphorescent Iridium(III) Complex Featuring Three Strong Electronâ€Donating Nâ€Embedded Ï€â€Conjugation Units. ChemistrySelect, 2022, 7, .	0.7	0