Catarina M Paquete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3119049/publications.pdf

Version: 2024-02-01

46 1,397 23 36 papers citations h-index g-index

49 49 49 49 1382

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Letâ∈™s chat: Communication between electroactive microorganisms. Bioresource Technology, 2022, 347, 126705.	9.6	33
2	Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications. World Journal of Microbiology and Biotechnology, 2022, 38, 83.	3.6	8
3	Investigation of the Molecular Mechanisms of the Eukaryotic Cytochrome-c Maturation System. Biomolecules, 2022, 12, 549.	4.0	1
4	Crossing the Wall: Characterization of the Multiheme Cytochromes Involved in the Extracellular Electron Transfer Pathway of Thermincola ferriacetica. Microorganisms, 2021, 9, 293.	3.6	12
5	Bacterial Power: An Alternative Energy Source. , 2021, , 215-246.		2
6	Editorial: Microbial Bioenergetics. Frontiers in Microbiology, 2021, 12, 793917.	3.5	1
7	Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Science, 2020, 29, 830-842.	7.6	48
8	Electroactivity across the cell wall of Gram-positive bacteria. Computational and Structural Biotechnology Journal, 2020, 18, 3796-3802.	4.1	24
9	Exploring the Effects of bolA in Biofilm Formation and Current Generation by Shewanella oneidensis MR-1. Frontiers in Microbiology, 2020, 11, 815.	3.5	15
10	How Thermophilic Gram-Positive Organisms Perform Extracellular Electron Transfer: Characterization of the Cell Surface Terminal Reductase OcwA. MBio, 2019, 10, .	4.1	31
11	Electroactive Biochar for Large-Scale Environmental Applications of Microbial Electrochemistry. ACS Sustainable Chemistry and Engineering, 2019, 7, 18198-18212.	6.7	46
12	A brief survey of the "cytochromome― Advances in Microbial Physiology, 2019, 75, 69-135.	2.4	12
13	Optimizing Electroactive Organisms: The Effect of Orthologous Proteins. Frontiers in Energy Research, 2019, 7, .	2.3	11
14	Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role. Applied and Environmental Microbiology, 2019, 85, .	3.1	20
15	Improvement of the electron transfer rate in Shewanella oneidensis MR-1 using a tailored periplasmic protein composition. Bioelectrochemistry, 2019, 129, 18-25.	4.6	31
16	Exploring the Molecular Mechanisms of Extracellular Electron Transfer for Harnessing Reducing Power in METs., 2019,, 261-293.		3
17	Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins. Bioresource Technology, 2018, 255, 308-317.	9.6	85
18	Extracellular reduction of solid electron acceptors by <i>Shewanella oneidensis</i> Microbiology, 2018, 109, 571-583.	2.5	83

#	Article	IF	Citations
19	Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure. Biosensors and Bioelectronics, 2018, 121, 183-191.	10.1	49
20	Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of <i>Geobacter sulfurreducens</i> . Biochemical Journal, 2017, 474, 797-808.	3.7	20
21	Characterization of OmcA Mutants from <i>Shewanella oneidensis</i> MRâ€1 to Investigate the Molecular Mechanisms Underpinning Electron Transfer Across the Microbeâ€Electrode Interface. Fuel Cells, 2017, 17, 601-611.	2.4	10
22	Modulation of the reactivity of multiheme cytochromes by site-directed mutagenesis: moving towards the optimization of microbial electrochemical technologies. Journal of Biological Inorganic Chemistry, 2017, 22, 87-97.	2.6	12
23	Unraveling the electron transfer processes of a nanowire protein from Geobacter sulfurreducens. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 7-13.	1.0	16
24	Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1. Frontiers in Microbiology, 2015, 6, 665.	3.5	42
25	Heterologous expression and purification of a multiheme cytochrome from a Gram-positive bacterium capable of performing extracellular respiration. Protein Expression and Purification, 2015, 111, 48-52.	1.3	19
26	Exploring the molecular mechanisms of electron shuttling across the microbe/metal space. Frontiers in Microbiology, 2014, 5, 318.	3.5	65
27	Synthesis and characterization of micelles as carriers of non-steroidal anti-inflammatory drugs (NSAID) for application in breast cancer therapy. Colloids and Surfaces B: Biointerfaces, 2014, 113, 375-383.	5.0	29
28	Unveiling the Details of Electron Transfer in Multicenter Redox Proteins. Accounts of Chemical Research, 2014, 47, 56-65.	15.6	55
29	Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1012-1025.	4.3	61
30	Molecular mechanisms of heme based sensors from sediment organisms capable of extracellular electron transfer. Journal of Inorganic Biochemistry, 2014, 133, 104-109.	3.5	1
31	Redox tuning of the catalytic activity of soluble fumarate reductases from Shewanella. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 717-725.	1.0	13
32	Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of <i>Shewanella oneidensis</i> MR-1. Biochemical Journal, 2013, 449, 101-108.	3.7	129
33	Corrigendum to "The role of intramolecular interactions in the functional control of multiheme cytochromesc―[FEBS Lett. 586 (2012) 504-509]. FEBS Letters, 2012, 586, 3536-3536.	2.8	0
34	The quest to achieve the detailed structural and functional characterization of CymA. Biochemical Society Transactions, 2012, 40, 1291-1294.	3.4	11
35	The role of intramolecular interactions in the functional control of multiheme cytochromes <i>></i> i>: FEBS Letters, 2012, 586, 504-509.	2.8	36
36	Mapping the Iron Binding Site(s) on the Small Tetraheme Cytochrome of <i>Shewanella oneidensis</i> MR-1. Biochemistry, 2011, 50, 6217-6224.	2.5	19

#	Article	IF	CITATION
37	Exploration of the  cytochromome' of Desulfuromonas acetoxidans, a marine bacterium capable of powering microbial fuel cells. Metallomics, 2011, 3, 349.	2.4	28
38	Nanoparticle mediated delivery of pure P53 supercoiled plasmid DNA for gene therapy. Journal of Controlled Release, 2011, 156, 212-222.	9.9	63
39	Molecular Basis for Directional Electron Transfer. Journal of Biological Chemistry, 2010, 285, 10370-10375.	3.4	24
40	Molecular details of multielectron transfer: the case of multiheme cytochromes from metal respiring organisms. Dalton Transactions, 2010, 39, 4259-4266.	3.3	38
41	The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes. Journal of Biological Inorganic Chemistry, 2009, 14, 375-385.	2.6	48
42	Functional properties of type I and type II cytochromes c3 from Desulfovibrio africanus. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 178-188.	1.0	10
43	Thermodynamic and kinetic characterisation of individual haems in multicentre cytochromes c3. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1169-1179.	1.0	36
44	Proton-assisted Two-electron Transfer in Natural Variants of Tetraheme Cytochromes from Desulfomicrobium Sp Journal of Biological Chemistry, 2004, 279, 52227-52237.	3.4	24
45	Distance dependence of interactions between charged centres in proteins with common structural features. FEBS Letters, 2004, 576, 77-80.	2.8	34
46	Thermodynamic and kinetic characterization of trihaem cytochrome c 3 from Desulfuromonas acetoxidans. FEBS Journal, 2002, 269, 5722-5730.	0.2	39