Catarina M Paquete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3119049/publications.pdf Version: 2024-02-01

CATADINA M PAQUETE

#	Article	IF	CITATIONS
1	Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of <i>Shewanella oneidensis</i> MR-1. Biochemical Journal, 2013, 449, 101-108.	3.7	129
2	Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins. Bioresource Technology, 2018, 255, 308-317.	9.6	85
3	Extracellular reduction of solid electron acceptors by <i>Shewanella oneidensis</i> . Molecular Microbiology, 2018, 109, 571-583.	2.5	83
4	Exploring the molecular mechanisms of electron shuttling across the microbe/metal space. Frontiers in Microbiology, 2014, 5, 318.	3.5	65
5	Nanoparticle mediated delivery of pure P53 supercoiled plasmid DNA for gene therapy. Journal of Controlled Release, 2011, 156, 212-222.	9.9	63
6	Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1012-1025.	4.3	61
7	Unveiling the Details of Electron Transfer in Multicenter Redox Proteins. Accounts of Chemical Research, 2014, 47, 56-65.	15.6	55
8	Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure. Biosensors and Bioelectronics, 2018, 121, 183-191.	10.1	49
9	The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes. Journal of Biological Inorganic Chemistry, 2009, 14, 375-385.	2.6	48
10	Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Science, 2020, 29, 830-842.	7.6	48
11	Electroactive Biochar for Large-Scale Environmental Applications of Microbial Electrochemistry. ACS Sustainable Chemistry and Engineering, 2019, 7, 18198-18212.	6.7	46
12	Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1. Frontiers in Microbiology, 2015, 6, 665.	3.5	42
13	Thermodynamic and kinetic characterization of trihaem cytochrome c 3 from Desulfuromonas acetoxidans. FEBS Journal, 2002, 269, 5722-5730.	0.2	39
14	Molecular details of multielectron transfer: the case of multiheme cytochromes from metal respiring organisms. Dalton Transactions, 2010, 39, 4259-4266.	3.3	38
15	Thermodynamic and kinetic characterisation of individual haems in multicentre cytochromes c3. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1169-1179.	1.0	36
16	The role of intramolecular interactions in the functional control of multiheme cytochromes <i>c</i> . FEBS Letters, 2012, 586, 504-509.	2.8	36
17	Distance dependence of interactions between charged centres in proteins with common structural features. FEBS Letters, 2004, 576, 77-80.	2.8	34
18	Let's chat: Communication between electroactive microorganisms. Bioresource Technology, 2022, 347, 126705.	9.6	33

CATARINA M PAQUETE

#	Article	IF	CITATIONS
19	How Thermophilic Gram-Positive Organisms Perform Extracellular Electron Transfer: Characterization of the Cell Surface Terminal Reductase OcwA. MBio, 2019, 10, .	4.1	31
20	Improvement of the electron transfer rate in Shewanella oneidensis MR-1 using a tailored periplasmic protein composition. Bioelectrochemistry, 2019, 129, 18-25.	4.6	31
21	Synthesis and characterization of micelles as carriers of non-steroidal anti-inflammatory drugs (NSAID) for application in breast cancer therapy. Colloids and Surfaces B: Biointerfaces, 2014, 113, 375-383.	5.0	29
22	Exploration of the â€~cytochromome' of Desulfuromonas acetoxidans, a marine bacterium capable of powering microbial fuel cells. Metallomics, 2011, 3, 349.	2.4	28
23	Proton-assisted Two-electron Transfer in Natural Variants of Tetraheme Cytochromes from Desulfomicrobium Sp Journal of Biological Chemistry, 2004, 279, 52227-52237.	3.4	24
24	Molecular Basis for Directional Electron Transfer. Journal of Biological Chemistry, 2010, 285, 10370-10375.	3.4	24
25	Electroactivity across the cell wall of Gram-positive bacteria. Computational and Structural Biotechnology Journal, 2020, 18, 3796-3802.	4.1	24
26	Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of <i>Geobacter sulfurreducens</i> . Biochemical Journal, 2017, 474, 797-808.	3.7	20
27	Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role. Applied and Environmental Microbiology, 2019, 85, .	3.1	20
28	Mapping the Iron Binding Site(s) on the Small Tetraheme Cytochrome of <i>Shewanella oneidensis</i> MR-1. Biochemistry, 2011, 50, 6217-6224.	2.5	19
29	Heterologous expression and purification of a multiheme cytochrome from a Gram-positive bacterium capable of performing extracellular respiration. Protein Expression and Purification, 2015, 111, 48-52.	1.3	19
30	Unraveling the electron transfer processes of a nanowire protein from Geobacter sulfurreducens. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 7-13.	1.0	16
31	Exploring the Effects of bolA in Biofilm Formation and Current Generation by Shewanella oneidensis MR-1. Frontiers in Microbiology, 2020, 11, 815.	3.5	15
32	Redox tuning of the catalytic activity of soluble fumarate reductases from Shewanella. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 717-725.	1.0	13
33	Modulation of the reactivity of multiheme cytochromes by site-directed mutagenesis: moving towards the optimization of microbial electrochemical technologies. Journal of Biological Inorganic Chemistry, 2017, 22, 87-97.	2.6	12
34	A brief survey of the "cytochromome― Advances in Microbial Physiology, 2019, 75, 69-135.	2.4	12
35	Crossing the Wall: Characterization of the Multiheme Cytochromes Involved in the Extracellular Electron Transfer Pathway of Thermincola ferriacetica. Microorganisms, 2021, 9, 293.	3.6	12
36	The quest to achieve the detailed structural and functional characterization of CymA. Biochemical Society Transactions, 2012, 40, 1291-1294.	3.4	11

CATARINA M PAQUETE

#	Article	IF	CITATIONS
37	Optimizing Electroactive Organisms: The Effect of Orthologous Proteins. Frontiers in Energy Research, 2019, 7, .	2.3	11
38	Functional properties of type I and type II cytochromes c3 from Desulfovibrio africanus. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 178-188.	1.0	10
39	Characterization of OmcA Mutants from <i>Shewanella oneidensis</i> MRâ€1 to Investigate the Molecular Mechanisms Underpinning Electron Transfer Across the Microbeâ€Electrode Interface. Fuel Cells, 2017, 17, 601-611.	2.4	10
40	Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications. World Journal of Microbiology and Biotechnology, 2022, 38, 83.	3.6	8
41	Exploring the Molecular Mechanisms of Extracellular Electron Transfer for Harnessing Reducing Power in METs. , 2019, , 261-293.		3
42	Bacterial Power: An Alternative Energy Source. , 2021, , 215-246.		2
43	Molecular mechanisms of heme based sensors from sediment organisms capable of extracellular electron transfer. Journal of Inorganic Biochemistry, 2014, 133, 104-109.	3.5	1
44	Editorial: Microbial Bioenergetics. Frontiers in Microbiology, 2021, 12, 793917.	3.5	1
45	Investigation of the Molecular Mechanisms of the Eukaryotic Cytochrome-c Maturation System. Biomolecules, 2022, 12, 549.	4.0	1
46	Corrigendum to "The role of intramolecular interactions in the functional control of multiheme cytochromesc―[FEBS Lett. 586 (2012) 504-509]. FEBS Letters, 2012, 586, 3536-3536.	2.8	0