Tian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3118916/publications.pdf Version: 2024-02-01

TIAN MANC

#	Article	IF	CITATIONS
1	Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Medicine, 2004, 10, 1366-1373.	15.2	998
2	A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nature Medicine, 2017, 23, 763-767.	15.2	242
3	An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nature Communications, 2018, 9, 414.	5.8	231
4	Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell, 2017, 170, 273-283.e12.	13.5	224
5	Toll-like Receptor 7 Mitigates Lethal West Nile Encephalitis via Interleukin 23-Dependent Immune Cell Infiltration and Homing. Immunity, 2009, 30, 242-253.	6.6	180
6	Gamma Interferon Plays a Crucial Early Antiviral Role in Protection against West Nile Virus Infection. Journal of Virology, 2006, 80, 5338-5348.	1.5	179
7	Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nature Cell Biology, 2016, 18, 632-644.	4.6	174
8	IFN-γ-Producing γδT Cells Help Control Murine West Nile Virus Infection. Journal of Immunology, 2003, 171, 2524-2531.	0.4	171
9	Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. Journal of Clinical Investigation, 2007, 117, 3059-3066.	3.9	135
10	Functional Analysis of Glycosylation of Zika Virus Envelope Protein. Cell Reports, 2017, 21, 1180-1190.	2.9	118
11	Detection of Human Anti-Flavivirus Antibodies with a West Nile Virus Recombinant Antigen Microsphere Immunoassay. Journal of Clinical Microbiology, 2004, 42, 65-72.	1.8	114
12	A chikungunya fever vaccine utilizing an insect-specific virus platform. Nature Medicine, 2017, 23, 192-199.	15.2	105
13	Immunization of Mice Against West Nile Virus with Recombinant Envelope Protein. Journal of Immunology, 2001, 167, 5273-5277.	0.4	98
14	Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection. Journal of General Virology, 2009, 90, 2660-2668.	1.3	78
15	Î ³ δT Cells Facilitate Adaptive Immunity against West Nile Virus Infection in Mice. Journal of Immunology, 2006, 177, 1825-1832.	0.4	76
16	The Characterization of Disease Severity Associated IgG Subclasses Response in COVID-19 Patients. Frontiers in Immunology, 2021, 12, 632814.	2.2	62
17	A recombinant envelope protein vaccine against West Nile virus. Vaccine, 2005, 23, 3915-3924.	1.7	60
18	Drak2 Contributes to West Nile Virus Entry into the Brain and Lethal Encephalitis. Journal of Immunology, 2008, 181, 2084-2091.	0.4	58

TIAN WANG

#	Article	IF	CITATIONS
19	<i>MIF</i> allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7917-E7926.	3.3	54
20	γδd T cells promote the maturation of dendritic cells during West Nile virus infection. FEMS Immunology and Medical Microbiology, 2010, 59, 71-80.	2.7	51
21	Role of two distinct γδT cell subsets during West Nile virus infection. FEMS Immunology and Medical Microbiology, 2008, 53, 275-283.	2.7	49
22	A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission. Cell Host and Microbe, 2018, 24, 487-499.e5.	5.1	46
23	Superoxide Anion Production duringAnaplasma phagocytophilaInfection. Journal of Infectious Diseases, 2002, 186, 274-280.	1.9	43
24	Immunity to West Nile virus. Current Opinion in Immunology, 2004, 16, 519-523.	2.4	43
25	Zika, dengue and yellow fever viruses induce differential anti-viral immune responses in human monocytic and first trimester trophoblast cells. Antiviral Research, 2018, 151, 55-62.	1.9	40
26	West Nile Virus Infection in the Central Nervous System. F1000Research, 2016, 5, 105.	0.8	39
27	Vγ4+T cells regulate host immune response to West Nile virus infection. FEMS Immunology and Medical Microbiology, 2011, 63, 183-192.	2.7	37
28	A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity. EBioMedicine, 2018, 36, 92-102.	2.7	37
29	A Hamster-Derived West Nile Virus Isolate Induces Persistent Renal Infection in Mice. PLoS Neglected Tropical Diseases, 2013, 7, e2275.	1.3	35
30	Effects of Chikungunya virus immunity on Mayaro virus disease and epidemic potential. Scientific Reports, 2019, 9, 20399.	1.6	35
31	Oral Administration of Active Hexose Correlated Compound Enhances Host Resistance to West Nile Encephalitis in Mice. Journal of Nutrition, 2009, 139, 598-602.	1.3	34
32	Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. Journal of Clinical Investigation, 2018, 128, 4980-4991.	3.9	34
33	Maternal vaccination and protective immunity against Zika virus vertical transmission. Nature Communications, 2019, 10, 5677.	5.8	32
34	lmmune responses to an attenuated West Nile virus NS4B-P38G mutant strain. Vaccine, 2011, 29, 4853-4861.	1.7	31
35	Role of Natural Killer and Gamma-Delta T cells in West Nile Virus Infection. Viruses, 2013, 5, 2298-2310.	1.5	27
36	Dysregulation of Toll-Like Receptor 7 Compromises Innate and Adaptive T Cell Responses and Host Resistance to an Attenuated West Nile Virus Infection in Old Mice. Journal of Virology, 2016, 90, 1333-1344.	1.5	27

TIAN WANG

#	Article	IF	CITATIONS
37	TLR7 Signaling Regulates Th17 Cells and Autoimmunity: Novel Potential for Autoimmune Therapy. Journal of Immunology, 2017, 199, 941-954.	0.4	27
38	Characterization of lethal dengue virus type 4 (DENV-4) TVP-376 infection in mice lacking both IFN-α/β and IFN-γ receptors (AG129) and comparison with the DENV-2 AG129 mouse model. Journal of General Virology, 2015, 96, 3035-3048.	1.3	27
39	p38MAPK plays a critical role in induction of a pro-inflammatory phenotype of retinal Müller cells following Zika virus infection. Antiviral Research, 2017, 145, 70-81.	1.9	22
40	West Nile Virus Induced Cell Death in the Central Nervous System. Pathogens, 2019, 8, 215.	1.2	22
41	The Co-Stimulatory Effects of MyD88-Dependent Toll-Like Receptor Signaling on Activation of Murine γδ T Cells. PLoS ONE, 2014, 9, e108156.	1.1	19
42	A West Nile virus NS4B-P38G mutant strain induces adaptive immunity via TLR7-MyD88-dependent and independent signaling pathways. Vaccine, 2013, 31, 4143-4151.	1.7	15
43	An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses. Npj Vaccines, 2019, 4, 48.	2.9	14
44	lsolation of a novel insect-specific flavivirus with immunomodulatory effects in vertebrate systems. Virology, 2021, 562, 50-62.	1.1	14
45	Memory T Cells in Flavivirus Vaccination. Vaccines, 2018, 6, 73.	2.1	13
46	Peli1 signaling blockade attenuates congenital zika syndrome. PLoS Pathogens, 2020, 16, e1008538.	2.1	13
47	West Nile Virus Envelope Protein. Annals of the New York Academy of Sciences, 2001, 951, 325-327.	1.8	12
48	Virulence determinants of West Nile virus: how can these be used for vaccine design?. Future Virology, 2017, 12, 283-295.	0.9	12
49	Recent advances in understanding West Nile virus host immunity and viral pathogenesis. F1000Research, 2018, 7, 338.	0.8	12
50	Role of γδT cells in West Nile virus-induced encephalitis: Friend or foe?. Journal of Neuroimmunology, 2011, 240-241, 22-27.	1.1	10
51	Zika virus induces neuronal and vascular degeneration in developing mouse retina. Acta Neuropathologica Communications, 2021, 9, 97.	2.4	10
52	Changes of Small Non-coding RNAs by Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Frontiers in Molecular Biosciences, 2022, 9, 821137.	1.6	10
53	A West Nile virus NS4B-P38G mutant strain induces cell intrinsic innate cytokine responses in human monocytic and macrophage cells. Vaccine, 2015, 33, 869-878.	1.7	9
54	Optimized production and immunogenicity of an insect virus-based chikungunya virus candidate vaccine in cell culture and animal models. Emerging Microbes and Infections, 2021, 10, 305-316.	3.0	9

TIAN WANG

#	Article	IF	CITATIONS
55	A Recombinant Envelope Protein-Based Enzyme-Linked Immunosorbent Assay for West Nile Virus Serodiagnosis. Vector-Borne and Zoonotic Diseases, 2002, 2, 105-109.	0.6	8
56	Lessons from the Murine Models of West Nile Virus Infection. Methods in Molecular Biology, 2016, 1435, 61-69.	0.4	8
57	MAVS Is Essential for Primary CD4 ⁺ T Cell Immunity but Not for Recall T Cell Responses following an Attenuated West Nile Virus Infection. Journal of Virology, 2017, 91, .	1.5	8
58	West Nile Virus. Clinics in Laboratory Medicine, 2017, 37, 243-252.	0.7	8
59	Genotypic and phenotypic characterization of West Nile virus NS5 methyltransferase mutants. Vaccine, 2019, 37, 7155-7164.	1.7	8
60	Rickettsia parkeri with a Genetically Disrupted Phage Integrase Gene Exhibits Attenuated Virulence and Induces Protective Immunity against Fatal Rickettsioses in Mice. Pathogens, 2021, 10, 819.	1.2	8
61	Mucosal vaccination induces protection against SARS-CoV-2 in the absence of detectable neutralizing antibodies. Npj Vaccines, 2021, 6, 139.	2.9	8
62	Japanese encephalitis vaccine-specific envelope protein E138K mutation does not attenuate virulence of West Nile virus. Npj Vaccines, 2019, 4, 50.	2.9	7
63	$\hat{I}^{3}\hat{I}$ T cells in infection and autoimmunity. International Immunopharmacology, 2015, 28, 887-891.	1.7	6
64	A hamster-derived West Nile virus strain is highly attenuated and induces a differential proinflammatory cytokine response in two murine cell lines. Virus Research, 2012, 167, 179-187.	1.1	5
65	A genetically stable Zika virus vaccine candidate protects mice against virus infection and vertical transmission. Npj Vaccines, 2021, 6, 27.	2.9	5
66	A modified porous silicon microparticle potentiates protective systemic and mucosal immunity for SARS-CoV-2 subunit vaccine. Translational Research, 2022, 249, 13-27.	2.2	5
67	West Nile Virus Infection in Human and Mouse Cornea Tissue. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1185-1191.	0.6	4
68	Impact of yellow fever virus envelope protein on wild-type and vaccine epitopes and tissue tropism. Npj Vaccines, 2022, 7, 39.	2.9	4
69	Flavivirus Immunity in Disease Control and Viral Pathogenesis. Viral Immunology, 2020, 33, 1-2.	0.6	2
70	Immunity Versus Immunopathology in West Nile Virus Induced Encephalitis. , 0, , .		2
71	In Vitro Analysis of Myd88-mediated Cellular Immune Response to West Nile Virus Mutant Strain Infection. Journal of Visualized Experiments, 2014, , e52121.	0.2	1
72	Memory B cell and antibody responses to flavivirus infection and vaccination. Faculty Reviews, 2021, 10, 5.	1.7	0

#	Article	IF	CITATIONS
73	A heparan-sulfate-bearing syndecan-1 glycoform is a distinct surface marker for intra-tumoral myeloid-derived suppressor cells. IScience, 2021, 24, 103349.	1.9	0