
Jacobo Hernandez-Montelongo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3118578/publications.pdf Version: 2024-02-01

Јасово

#	Article	IF	CITATIONS
1	Antibacterial noncytotoxic chitosan coatings on polytetrafluoroethylene films by plasma grafting for medical device applications. Journal of Coatings Technology Research, 2022, 19, 829-838.	2.5	2
2	Green synthesized silver nanoparticles decorated on nanostructured porous silicon as an efficient platform for the removal of organic dye methylene blue. Green Chemistry Letters and Reviews, 2022, 15, 108-115.	4.7	7
3	Controlled Release of Caffeic Acid and Pinocembrin by Use of nPSi-βCD Composites Improves Their Antiangiogenic Activity. Pharmaceutics, 2022, 14, 484.	4.5	4
4	Cost Function Analysis Applied to Different Kinetic Release Models of Arrabidaea chica Verlot Extract from Chitosan/Alginate Membranes. Polymers, 2022, 14, 1109.	4.5	10
5	Mathematical Modeling of Recursive Drug Delivery with Diffusion, Equilibrium, and Convection Coupling. Mathematics, 2022, 10, 2171.	2.2	3
6	Composite thin films of nanoporous silicon/green synthesized silver nanoparticles as antibacterial surface. Materials Letters, 2022, 324, 132734.	2.6	3
7	Nanoporous silicon microparticles embedded into oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for enhanced controlled drug delivery. Microporous and Mesoporous Materials, 2021, 310, 110634.	4.4	14
8	Hydrothermal control of the lithium-rich Li ₂ MnO ₃ phase in lithium manganese oxide nanocomposites and their application as precursors for lithium adsorbents. Dalton Transactions, 2021, 50, 10765-10778.	3.3	8
9	Functionalized microchannels as xylem-mimicking environment: Quantifying X.Âfastidiosa cell adhesion. Biophysical Journal, 2021, 120, 1443-1453.	0.5	0
10	Antibacterial effect of hyaluronan/chitosan nanofilm in the initial adhesion of Pseudomonas aeruginosa wild type, and IV pili and LPS mutant strains. Surfaces and Interfaces, 2021, 26, 101415.	3.0	2
11	Fabrication and characterization of nanostructured porous silicon-silver composite layers by cyclic deposition: dip-coating vs spin-coating. Nanotechnology, 2020, 31, 365704.	2.6	2
12	Hybrid porous silicon/green synthetized Ag microparticles as potential carries for Ag nanoparticles and drug delivery. Materials Science and Engineering C, 2020, 116, 111183.	7.3	13
13	c-di-GMP-related phenotypes are modulated by the interaction between a diguanylate cyclase and a polar hub protein. Scientific Reports, 2020, 10, 3077.	3.3	15
14	Fractal analysis of the formation process and morphologies of hyaluronan/chitosan nanofilms in layer-by-layer assembly. Polymer, 2020, 191, 122283.	3.8	6
15	Flexible, dense and porous chitosan and alginate membranes containing the standardized extract of Arrabidaea chica Verlot for the treatment of skin lesions. Materials Science and Engineering C, 2020, 112, 110869.	7.3	11
16	Use of nPSi-βCD Composite Microparticles for the Controlled Release of Caffeic Acid and Pinocembrin, Two Main Polyphenolic Compounds Found in a Chilean Propolis. Pharmaceutics, 2019, 11, 289.	4.5	10
17	Electrostatic immobilization of antimicrobial peptides on polyethylenimine and their antibacterial effect against Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces, 2018, 164, 370-378.	5.0	13
18	Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight. Applied Surface Science, 2018, 445, 478-487.	6.1	44

Јасово

#	Article	IF	CITATIONS
19	Nanoporous Silicon Composite as Potential System for Sustained Delivery of Florfenicol Drug. Physica Status Solidi (B): Basic Research, 2018, 255, 1700626.	1.5	8
20	Influence of pH and ionic strength on the antibacterial effect of hyaluronic acid/chitosan films assembled layer-by-layer. European Polymer Journal, 2018, 109, 198-205.	5.4	26
21	Recent developments in surface science and engineering, thin films, nanoscience, biomaterials, plasma science, and vacuum technology. Thin Solid Films, 2018, 660, 120-160.	1.8	27
22	Synthesis and Properties of Silk Fibroin/Konjac Glucomannan Blend Beads. Polymers, 2018, 10, 923.	4.5	11
23	Antibacterial and non-cytotoxic ultra-thin polyethylenimine film. Materials Science and Engineering C, 2017, 71, 718-724.	7.3	20
24	Hyaluronan/chitosan nanofilms assembled layer-by-layer and their antibacterial effect: A study using Staphylococcus aureus and Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 2016, 141, 499-506.	5.0	52
25	Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa. Carbohydrate Polymers, 2016, 136, 1-11.	10.2	46
26	Nanostructured Porous Silicon: The Winding Road from Photonics to Cell Scaffolds ââ,¬â€œ A Review. Frontiers in Bioengineering and Biotechnology, 2015, 3, 60.	4.1	42
27	Nanostructured porous silicon-mediated drug delivery. Expert Opinion on Drug Delivery, 2014, 11, 1273-1283.	5.0	21
28	Fabrication and characterization of a chemically oxidized-nanostructured porous silicon based biosensor implementing orienting protein A. Colloids and Surfaces B: Biointerfaces, 2014, 115, 310-316.	5.0	17
29	Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation. Materials Science and Engineering C, 2014, 34, 245-251.	7.3	14
30	Porous silicon-cyclodextrin based polymer composites for drug delivery applications. Carbohydrate Polymers, 2014, 110, 238-252.	10.2	58
31	Chemical stabilization of porous silicon for enhanced biofunctionalization with immunoglobulin. Science and Technology of Advanced Materials, 2012, 13, 045009.	6.1	26