
Wanyuan Gui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3118505/publications.pdf Version: 2024-02-01

WANYHAN CHI

#	Article	IF	CITATIONS
1	Ti-40Al-10Nb-10Cr Porous Microfiltration Membrane with Hierarchical Pore Structure for Particulate Matter Capturing from High-Temperature Flue Gas. Membranes, 2022, 12, 104.	3.0	0
2	Fluorine Effect for Improving Oxidation Resistance of Ti-45Al-8.5Nb Alloy at 1000 °C. Materials, 2022, 15, 2767.	2.9	2
3	Laser-clad Inconel 625 coatings on Q245R structure steel: microstructure, wear and corrosion resistance. Npj Materials Degradation, 2022, 6, .	5.8	15
4	Effects of WC on the Microstructure, Wear and Corrosion Resistance of Laser-Deposited CoCrFeNi High Entropy Alloy Coatings. Coatings, 2022, 12, 985.	2.6	11
5	High efficiency hierarchical porous composite microfiltration membrane for high-temperature particulate matter capturing. Npj Materials Degradation, 2021, 5, .	5.8	15
6	FeAl/Al2O3 porous composite microfiltration membrane for highly efficiency highâ€ŧemperature particulate matter capturing. Journal of Porous Materials, 2021, 28, 955-961.	2.6	4
7	Cathode electrolytic plasma deposition of (Al0.9Cr0.1)2O3/γ-Al2O3 composite coatings onto Ti45Al8.5Nb0.1Y0.2W alloys for high-temperature applications. Materialia, 2021, 15, 101002.	2.7	7
8	A new microfiltration membrane with three-dimensional reticular architecture for Nano-pollutants removal from wastewater. Progress in Natural Science: Materials International, 2021, 31, 414-414.	4.4	10
9	Effects of W Alloying on the Lattice Distortion and Wear Behavior of Laser Cladding AlCoCrFeNiWx High-Entropy Alloy Coatings. Materials, 2021, 14, 5450.	2.9	9
10	Slow-Growing Titanium Dioxide on Ti-48Al Porous Alloy Mediated by Nb and Cr Addition: Perspective via Local Metal–Oxygen Bonding Strength. Journal of Materials Engineering and Performance, 2020, 29, 1558-1566.	2.5	2
11	A two-step strategy for high-efficiency fluorescent dye removal from wastewater. Npj Clean Water, 2019, 2, .	8.0	10
12	Effects of nano-NiO addition on the microstructure and corrosion properties of high Nb-TiAl alloy. Journal of Alloys and Compounds, 2019, 782, 973-980.	5.5	11
13	Micro-/Nano-Dual-Scale Porous Composite Membranes for the Separation of Nanopollutants from Water. ACS Applied Nano Materials, 2019, 2, 806-811.	5.0	6
14	High Nb-TiAl-based porous composite with hierarchical micro-pore structure for high temperature applications. Journal of Alloys and Compounds, 2018, 744, 463-469.	5.5	29
15	Evolution of Microstructure and Microsegregation of Ti-45Al-8Nb Alloy during Directional Solidification. Advances in Materials Science and Engineering, 2018, 2018, 1-9.	1.8	2
16	Surface Modification of Q195 Structure Carbon Steel by Electrolytic Plasma Processing. Metals, 2018, 8, 831.	2.3	0
17	Surface modification of Ti-45Al-8.5†Nb alloys by microarc oxidation to improve high-temperature oxidation resistance. Progress in Natural Science: Materials International, 2018, 28, 386-390.	4.4	15
18	Effect of Electrolytic Plasma Processing on the Removal of Surface Scale for Fe6.5Si Alloy. ChemistrySelect, 2017, 2, 1158-1162.	1.5	2

Wanyuan Gui

#	Article	IF	CITATIONS
19	Electrolytic plasma processing-an innovative treatment for surface modification of 304 stainless steel. Scientific Reports, 2017, 7, 308.	3.3	10
20	Microstructure and microsegregation of directionally solidified Ti–45Al–8Nb alloy with different solidification rates. Rare Metals, 2016, 35, 70-76.	7.1	5
21	Advances in phase relationship for high Nb-containing TiAl alloys. Rare Metals, 2016, 35, 15-25.	7.1	27
22	Surface modification by electrolytic plasma processing for high Nb-TiAl alloys. Applied Surface Science, 2016, 389, 1161-1168.	6.1	16
23	Light-Triggered Drug Release Platform Based on Superhydrophobicity of Mesoporous Silica Nanoparticles. Nanoscience and Nanotechnology Letters, 2016, 8, 428-433.	0.4	5
24	Phase transformation in Ti–48Al–6Nb porous alloys and its influence on pore properties. Materials and Design, 2015, 83, 508-513.	7.0	22
25	Dual argo Selectively Controlled Release Based on a pHâ€Responsive Mesoporous Silica System. ChemPhysChem, 2015, 16, 607-613.	2.1	8
26	High-temperature oxidation resistance of (Al2O3–Y2O3)/(Y2O3-stabilized ZrO2) laminated coating on 8Nb–TiAl alloy prepared by a novel spray pyrolysis. Corrosion Science, 2014, 80, 19-27.	6.6	40
27	Pore structure and gas permeability of high Nb-containing TiAl porous alloys by elemental powder metallurgy for microfiltration application. Intermetallics, 2013, 33, 2-7.	3.9	42