John Semple

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3118431/publications.pdf

Version: 2024-02-01

111	6,862	38	80
papers	citations	h-index	g-index
113	113	113	7421
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	Platelets and the immune continuum. Nature Reviews Immunology, 2011, 11, 264-274.	22.7	1,361
2	Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood, 2014, 124, 2173-2183.	1.4	513
3	Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood, 2006, 107, 637-641.	1.4	431
4	Thrombocytopenia following Pfizer and Moderna <scp>SARSâ€CoV</scp> â€2 vaccination. American Journal of Hematology, 2021, 96, 534-537.	4.1	331
5	Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP). Journal of Clinical Medicine, 2017, 6, 16.	2.4	318
6	Platelets and innate immunity. Cellular and Molecular Life Sciences, 2010, 67, 499-511.	5. 4	277
7	A murine model of severe immune thrombocytopenia is induced by antibody- and CD8+ T cell–mediated responses that are differentially sensitive to therapy. Blood, 2010, 115, 1247-1253.	1.4	176
8	Transfusion-associated circulatory overload and transfusion-related acute lung injury. Blood, 2019, 133, 1840-1853.	1.4	174
9	Nouvelle Cuisine: Platelets Served with Inflammation. Journal of Immunology, 2015, 194, 5579-5587.	0.8	170
10	Cellular immune dysfunction in immune thrombocytopenia (<scp>ITP</scp>). British Journal of Haematology, 2013, 163, 10-23.	2.5	155
11	Platelet-bound lipopolysaccharide enhances Fc receptor–mediated phagocytosis of IgG-opsonized platelets. Blood, 2007, 109, 4803-4805.	1.4	122
12	The Immune Nature of Platelets Revisited. Transfusion Medicine Reviews, 2020, 34, 209-220.	2.0	104
13	Pathogenesis of immune thrombocytopenia. Presse Medicale, 2014, 43, e49-e59.	1.9	101
14	Characterization of plateletâ€reactive antibodies in children with varicellaâ€associated acute immune thrombocytopenic purpura (ITP). British Journal of Haematology, 1996, 95, 145-152.	2.5	95
15	T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10. Blood, 2017, 129, 2557-2569.	1.4	93
16	Cellular immune mechanisms in autoimmune thrombocytopenic purpura: An update. Transfusion Medicine Reviews, 2003, 17, 69-80.	2.0	91
17	Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Advances, 2017, 1, 1773-1785.	5.2	90
18	Thymic retention of CD4+CD25+FoxP3+ T regulatory cells is associated with their peripheral deficiency and thrombocytopenia in a murine model of immune thrombocytopenia. Blood, 2012, 120, 2127-2132.	1.4	86

#	Article	IF	Citations
19	Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura: relationship to platelet phenotype and antiplatelet T-cell reactivity. Blood, 1996, 87, 4245-54.	1.4	86
20	An update on the pathophysiology of immune thrombocytopenia. Current Opinion in Hematology, 2020, 27, 423-429.	2.5	79
21	Recent progress in understanding the pathogenesis of immune thrombocytopenia. Current Opinion in Hematology, 2010, 17, 590-595.	2.5	72
22	The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury. Transfusion Medicine and Hemotherapy, 2018, 45, 290-298.	1.6	70
23	Intravenous immunoglobulin inhibits anti-glycoprotein Ilb-induced platelet apoptosis in a murine model of immune thrombocytopenia. British Journal of Haematology, 2006, 133, 060207074859002.	2.5	67
24	The immunopathogenesis of immune thrombocytopenia. Current Opinion in Hematology, 2012, 19, 357-362.	2.5	67
25	Transfusionâ€related immunomodulation by platelets is dependent on their expression of MHC Class I molecules and is independent of white cells. Transfusion, 2008, 48, 1778-1786.	1.6	65
26	Autoimmune Pathogenesis and Autoimmune Hemolytic Anemia. Seminars in Hematology, 2005, 42, 122-130.	3.4	57
27	Peripheral blood monocyte-derived chemokine blockade prevents murine transfusion-related acute lung injury (TRALI). Blood, 2014, 123, 3496-3503.	1.4	57
28	CD20+ B-cell depletion therapy suppresses murine CD8+ T-cell–mediated immune thrombocytopenia. Blood, 2016, 127, 735-738.	1.4	55
29	C-reactive protein enhances murine antibody–mediated transfusion-related acute lung injury. Blood, 2015, 126, 2747-2751.	1.4	54
30	Platelets as immune-sensing cells. Blood Advances, 2016, 1, 10-14.	5.2	53
31	Flow cytometric evaluation of platelet activation in blood collected into EDTA vs. Diatube-H, a sodium citrate solution supplemented with theophylline, adenosine, and dipyridamole. American Journal of Hematology, 1995, 50, 40-45.	4.1	52
32	Recipient T lymphocytes modulate the severity of antibody-mediated transfusion-related acute lung injury. Blood, 2010, 116, 3073-3079.	1.4	50
33	Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production. PLoS ONE, 2012, 7, e31357.	2.5	50
34	Increased antiplatelet T helper lymphocyte reactivity in patients with autoimmune thrombocytopenia. Blood, 1991, 78, 2619-25.	1.4	50
35	Targeting Transfusion-Related Acute Lung Injury: The Journey From Basic Science to Novel Therapies. Critical Care Medicine, 2018, 46, e452-e458.	0.9	49
36	Rapid separation of CD4+ and CD19+ lymphocyte populations from human peripheral blood by a magnetic activated cell sorter (MACS). Cytometry, 1993, 14, 955-960.	1.8	48

#	Article	IF	CITATIONS
37	Suppressed natural killer cell activity in patients with chronic autoimmune thrombocytopenic purpura. American Journal of Hematology, 1991, 37, 258-262.	4.1	47
38	Recent advances in the mechanisms and treatment of immune thrombocytopenia. EBioMedicine, 2022, 76, 103820.	6.1	46
39	Gastrointestinal microbiota contributes to the development of murine transfusion-related acute lung injury. Blood Advances, 2018, 2, 1651-1663.	5.2	44
40	Platelet EVs contain an active proteasome involved in protein processing for antigen presentation via MHC-I molecules. Blood, 2021, 138, 2607-2620.	1.4	44
41	Platelet extracellular vesicles mediate transfusion-related acute lung injury by imbalancing the sphingolipid rheostat. Blood, 2021, 137, 690-701.	1.4	43
42	Osteopontin mediates murine transfusion-related acute lung injury via stimulation of pulmonary neutrophil accumulation. Blood, 2019, 134, 74-84.	1.4	42
43	FcÎ ³ RI and FcÎ ³ RIII on splenic macrophages mediate phagocytosis of anti-glycoprotein IIb/IIIa autoantibody-opsonized platelets in immune thrombocytopenia. Haematologica, 2020, 106, 250-254.	3.5	36
44	A Review of Romiplostim Mechanism of Action and Clinical Applicability. Drug Design, Development and Therapy, 2021, Volume 15, 2243-2268.	4.3	35
45	The spleen dictates platelet destruction, anti-platelet antibody production, and lymphocyte distribution patterns in a murine model of immune thrombocytopenia. Experimental Hematology, 2016, 44, 924-930.e1.	0.4	34
46	Thrombopoietin receptor agonist (TPO-RA) treatment raises platelet counts and reduces anti-platelet antibody levels in mice with immune thrombocytopenia (ITP). Platelets, 2020, 31, 399-402.	2.3	31
47	Platelet-Surface Glycoproteins in Healthy and Preeclamptic Mothers and Their Newborn Infants. Pediatric Research, 1996, 40, 876-880.	2.3	31
48	A comprehensive study of ovine haemostasis to assess suitability to model human coagulation. Thrombosis Research, 2014, 134, 468-473.	1.7	30
49	Elevation of C-reactive protein levels in patients with transfusion-related acute lung injury. Oncotarget, 2016, 7, 78048-78054.	1.8	28
50	Allogeneic platelet transfusions prevent murine T-cell–mediated immune thrombocytopenia. Blood, 2014, 123, 422-427.	1.4	27
51	Low levels of interleukin-10 in patients with transfusion-related acute lung injury. Annals of Translational Medicine, 2017, 5, 339-339.	1.7	27
52	Abnormal cellular immune mechanisms associated with autoimmune thrombocytopenia. Transfusion Medicine Reviews, 1995, 9, 327-338.	2.0	26
53	The nonhemostatic immune functions of platelets. Seminars in Hematology, 2016, 53, S2-S6.	3.4	26
54	Acid sphingomyelinase mediates murine acute lung injury following transfusion of aged platelets. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L625-L637.	2.9	26

#	Article	IF	Citations
55	Transfusion-related Acute Lung Injury in the Perioperative Patient. Anesthesiology, 2019, 131, 693-715.	2.5	26
56	Infections, Antigen-Presenting Cells, T Cells, and Immune Tolerance: Their Role in the Pathogenesis of Immune Thrombocytopenia. Hematology/Oncology Clinics of North America, 2009, 23, 1177-1192.	2.2	25
57	Mechanisms and therapeutic prospects of thrombopoietin receptor agonists. Seminars in Hematology, 2019, 56, 262-278.	3.4	25
58	Microparticles as biomarkers of lung disease: enumeration in biological fluids using lipid bilayer microspheres. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L802-L814.	2.9	23
59	The Role of Complement in Transfusion-Related Acute Lung Injury. Transfusion Medicine Reviews, 2019, 33, 236-242.	2.0	23
60	Immunobiology of T helper cells and antigenâ€presenting cells in autoimmune thrombocytopenic purpura (ITP). Acta Paediatrica, International Journal of Paediatrics, 1998, 87, 41-45.	1.5	20
61	Pathways of Processing of Insulin by Antigen-Presenting Cells. Immunological Reviews, 1988, 106, 195-222.	6.0	19
62	Animal models of immune thrombocytopenia (ITP). Annals of Hematology, 2010, 89, 37-44.	1.8	18
63	Processing and presentation of insulin. II. Evidence for intracellular, plasma membrane-associated and extracellular degradation of human insulin by antigen-presenting B cells. Journal of Immunology, 1989, 142, 4184-93.	0.8	18
64	Update on the pathophysiology of transfusion-related acute lung injury. Current Opinion in Hematology, 2020, 27, 386-391.	2.5	16
65	Cellular Immune Mechanisms in Chronic Autoimmune Thrombocytopenic Purpura (ATP). Autoimmunity, 1992, 13, 311-319.	2.6	15
66	Splenic lymphocyte subtypes in immune thrombocytopenia: increased presence of a subtype of Bâ€regulatory cells. British Journal of Haematology, 2016, 173, 159-160.	2.5	15
67	Treating murine inflammatory diseases with an anti-erythrocyte antibody. Science Translational Medicine, 2019, 11, .	12.4	15
68	Innate and Adaptive Immunity in Immune Thrombocytopenia. Seminars in Hematology, 2013, 50, S68-S70.	3.4	14
69	Platelets in ITP: Victims in Charge of Their Own Fate?. Cells, 2021, 10, 3235.	4.1	14
70	Thymic-derived tolerizing dendritic cells are upregulated in the spleen upon treatment with intravenous immunoglobulin in a murine model of immune thrombocytopenia. Platelets, 2017, 28, 521-524.	2.3	13
71	Intravenous immunoglobulin treatment of spleen cells from patients with immune thrombocytopenia significantly increases the percentage of myeloidâ€derived suppressor cells. British Journal of Haematology, 2018, 181, 262-264.	2.5	13
72	Antiplatelet antibodyâ€induced thrombocytopenia does not correlate with megakaryocyte abnormalities in murine immune thrombocytopenia. Scandinavian Journal of Immunology, 2018, 88, e12678.	2.7	13

#	Article	IF	CITATIONS
73	Distinct phenotypes of platelet, monocyte, and neutrophil activation occur during the acute and convalescent phase of COVID-19. Platelets, 2021, 32, 1092-1102.	2.3	13
74	Evaluation of Platelet Responses in Transfusion-Related Acute Lung Injury (TRALI). Transfusion Medicine Reviews, 2020, 34, 227-233.	2.0	12
75	Platelet immunology from the inside out. ISBT Science Series, 2020, 15, 315-319.	1.1	11
76	Extreme leukoreduction of major histocompatibility complex class II positive B cells enhances allogeneic platelet immunity. Blood, 1999, 93, 713-20.	1.4	11
77	A highly purified form of staphylococcal protein A alleviates murine immune thrombocytopenia (<scp>ITP</scp>). British Journal of Haematology, 2018, 183, 501-503.	2.5	10
78	Biological and structural characterization of murine TRALI antibody reveals increased Fc-mediated complement activation. Blood Advances, 2020, 4, 3875-3885.	5.2	8
79	The contribution of recipient platelets in <scp>TRALI</scp> : has the jury reached a verdict?. Transfusion, 2020, 60, 886-888.	1.6	8
80	Dissecting platelet proteomics to understand the pathophysiology of immune thrombocytopenia: studies in mouse models. Blood Advances, 2022, 6, 3529-3534.	5.2	7
81	IVIG induces dose-dependent amelioration of ITP in rodent models. Blood, 2003, 101, 1658-1659.	1.4	6
82	Leukoreduction Just Doesn't "Take Away―Immunogenic Leukcocytes, It Creates an Immunosuppressive Leukocyte Dose Vox Sanguinis, 2002, 83, 425-428.	1.5	5
83	Bregging rights in ITP. Blood, 2012, 120, 3169-3169.	1.4	5
84	Move over Tregs, MDSCs are here. Blood, 2016, 127, 1526-1528.	1.4	5
85	Platelets instruct T reg cells and macrophages in the resolution of lung inflammation. Journal of Experimental Medicine, 2021, 218, .	8.5	4
86	ITP has elevated BAFF expression. Blood, 2009, 114, 5248-5249.	1.4	3
87	Platelets have a role as immune cells. ISBT Science Series, 2012, 7, 269-273.	1.1	3
88	Platelet Functions Beyond Hemostasis., 2016,, 221-237.		3
89	Platelet immunobiology: platelets as prey and predator. ISBT Science Series, 2018, 13, 87-92.	1.1	3
90	Transfusionâ€essociated circulatory overload (<scp>TACO</scp>): Time to shed light on the pathophysiology. ISBT Science Series, 2019, 14, 136-139.	1.1	3

#	Article	IF	Citations
91	Sequence-specific 2'-O-methoxyethyl antisense oligonucleotides activate human platelets through glycoprotein VI, triggering formation of platelet-leukocyte aggregates. Haematologica, 2022, 107, 519-531.	3.5	3
92	The EHA Research Roadmap: Platelet Disorders. HemaSphere, 2021, 5, e601.	2.7	3
93	Enrichment of Complement, Immunoglobulins, and Autoantibody Targets in the Proteome of Platelets from Patients with Systemic Lupus Erythematosus. Thrombosis and Haemostasis, 2022, 122, 1486-1501.	3.4	3
94	A novel immunosuppressive pathway involving peroxynitrateâ€mediated nitration of platelet antigens within antigenâ€presenting cells. Transfusion, 2008, 48, 1917-1924.	1.6	2
95	The Ultimate Murine Model of Immune Thrombocytopaenia. Thrombosis and Haemostasis, 2019, 119, 353-354.	3.4	2
96	A New Murine Model of Immune Thrombocytopenia: Evidence of Both Antibody- and CD8+ T Cell-Mediated Platelet Destruction Blood, 2007, 110, 99-99.	1.4	2
97	Alleviation of gram-negative bacterial lung inflammation by targeting HECTD2. Annals of Translational Medicine, 2016, 4, 488-488.	1.7	2
98	Megakaryocytes listen for their progeny's progeny during inflammation. Journal of Thrombosis and Haemostasis, 2021, 19, 604-606.	3.8	2
99	Intravenous immunoglobulin products: an update on their mechanisms of action. ISBT Science Series, 2008, 3, 152-158.	1.1	1
100	The immune system as seen through the eyes of a platelet. ISBT Science Series, 2014, 9, 198-203.	1.1	1
101	Moving target PF4 directs HIT responses. Blood, 2018, 132, 678-679.	1.4	1
102	Pancreatic involvement in murine antibodyâ€mediated transfusionâ€related acute lung injury?. Transfusion, 2021, 61, 987-989.	1.6	1
103	Decitabine revives Treg function in ITP. Blood, 2021, 138, 591-592.	1.4	1
104	Splenic Mechanisms of Thrombocytopenia. Blood, 2017, 130, SCI-33-SCI-33.	1.4	1
105	The cellular pathophysiology of immune thrombocytopenia. ISBT Science Series, 2013, 8, 210-213.	1.1	O
106	New Emerging Developments of Platelets in Transfusion Medicine. Transfusion Medicine Reviews, 2020, 34, 207-208.	2.0	0
107	Platelets inhibit erythrocyte invasion by Plasmodium falciparum at physiological platelet:erythrocyte ratios. Transfusion Medicine, 2021, , .	1.1	0
108	Ceramide Containing Microparticles from Aged Stored Platelets Recapitulate Aspects of Murine Transfusion Related Acute Lung Injury. FASEB Journal, 2018, 32, 746.2.	0.5	0

#	Article	IF	CITATIONS
109	Fcî ³ Receptors I and III on Splenic Macrophages Mediate GPIIb/IIIa Autoantibody-Dependent Phagocytosis of Platelets in Human Immune Thrombocytopenia. Blood, 2018, 132, 129-129.	1.4	0
110	Osteopontin Mediates Murine Transfusion-Related Acute Lung Injury through Stimulation of Pulmonary Neutrophil Accumulation. Blood, 2018, 132, 739-739.	1.4	0
111	Extracellular Vesicle Sphingolipids from Stored Platelets Mediate Transfusion Related Acute Lung Injury. FASEB Journal, 2019, 33, 845.2.	0.5	O